zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Unsteady motions of a generalized second-grade fluid. (English) Zbl 1080.76007
Summary: Six types of unsteady flows are examined, namely, the impulsive flow, flow caused by a constantly accelerated plate, flows induced by impulsive and constant pressure gradients, flows induced by plate motions, flow imposed by a flat plate that applies a constant tangential stress to the fluid, and flow generated by an oscillating rigid plate. A generalized second-grade model with the fractional calculus is considered. Exact analytical solutions of unsteady flows have been constructed by using discrete Laplace transform of fractional derivatives.

MSC:
76A05Non-Newtonian fluids
76M25Other numerical methods (fluid mechanics)
WorldCat.org
Full Text: DOI
References:
[1] Truesdell, C.; Noll, W.: The non-linear field theories of mechanics. Handbuch der physik. /3 (1965)
[2] Rajagopal, K. R.: A note on the Falkner-Skan flows of a non-Newtonian fluid. Int. J. Non-lin. Mech. 17, 369 (1982) · Zbl 0527.76003
[3] Rajagopal, K. R.: Flow of viscoelastic fluids between rotating discs. Theor. comput. Fluid dyn. 3, 185 (1992) · Zbl 0747.76018
[4] Rajagopal, K. R.: On the creeping flow of the second-order fluid. J. non-Newtonian fluid mech. 15, 239 (1984) · Zbl 0568.76015
[5] Rajagopal, K. R.: The flow of a second order fluid between rotating parallel plates. J. non-Newtonian fluid mech. 9, 185 (1981) · Zbl 0476.76008
[6] Mansutti, D.; Pontrelli, G.; Rajagopal, K. R.: Non-similar flow of a non-Newtonian fluid past a wedge. Int. J. Engng. sci. 31, 637 (1993) · Zbl 0776.76008
[7] Rajagopal, K. R.; Na, T. Y.; Gupta, A. S.: Flow of a viscoelastic fluid over a stretching sheet. Rheologica acta 23, 213 (1984)
[8] Rajagopal, K. R.; Gupta, A. S.; Na, T. Y.: A note on the Falkner-Skan flows of a non-Newtonian fluid. Int. J. Non-lin. Mech. 18, 313 (1983) · Zbl 0527.76010
[9] Garg, V. K.; Rajagopal, K. R.: Flow of a non-Newtonian fluid past a wedge. Acta mech. 88, 113 (1991)
[10] Benharbit, A. M.; Siddiqui, A. M.: Certain solutions of equations of the planar motion of a second grade fluid for steady and unsteady cases. Acta mech. 94, 85 (1992) · Zbl 0749.76002
[11] Siddiqui, A. M.; Kaloni, P. N.: Certain inverse solutions of a non-Newtonian fluid. Int. J. Non-lin. Mech. 21, 459 (1986) · Zbl 0624.76004
[12] Siddiqui, A. M.; Hayat, T.; Asghar, S.: Periodic flows of a non-Newtonian fluid between two parallel plates. Int. J. Non-lin. Mech. 34, 895 (1999) · Zbl 1006.76004
[13] Hayat, T.; Asghar, S.; Siddiqui, A. M.: Periodic unsteady flows of a non-Newtonian fluid. Acta mech. 131, 169 (1998) · Zbl 0939.76002
[14] Hayat, T.; Asghar, S.; Siddiqui, A. M.: On the moment of a plane disk in a non-Newtonian fluid. Acta mech. 136, 125 (1999) · Zbl 0934.76003
[15] Srivastava, A. C.: The flow of a non-Newtonian liquid near a stagnation point. Z. angew. Math. phys. 60, 667 (1958) · Zbl 0079.18301
[16] Beard, D. W.; Walters, K.: Elastic-viscous boundary layer flow. Proc. camb. Phil. soc. 60, 667 (1964) · Zbl 0123.41601
[17] Astill, J.; Jones, R. S.; Lockeyer, P.: Boundary layers in non-Newtonian fluids. J. mecanique 12, 527 (1973)
[18] Frater, K. R.: A boundary layer in an elastico-viscous fluid. Z. angew. Math. phys. 20, 712 (1969) · Zbl 0176.53702
[19] Rajeswari, G. K.; Rathna, S. L.: Flow of a particular class of non-Newtonian viscoelastic and visco-inelastic fluids near a stagnation point. Z. angew. Math. phys. 13, 43 (1962) · Zbl 0105.19503
[20] Erdogan, M. E.: On the flow of a non-Newtonian fluid past a porous flat plate. Zamm 55, 128 (1975) · Zbl 0304.76039
[21] Mansutti, D.; Pontrelli, G.; Rajagopal, K. R.: Steady flows of non-Newtonian fluids past a porous plate with suction or injection. Int. J. Numer. meth. Fluids 17, 927 (1993) · Zbl 0797.76003
[22] Rajagopal, K. R.: On the boundary conditions for fluids of the differential type. Navier-Stokes equation and related non-linear problems (1995) · Zbl 0846.35107
[23] Rajagopal, K. R.; Gupta, A. S.: An exact solution for the flow of a non-Newtonian fluid past an infinite plate. Meccanica 19, 158 (1984) · Zbl 0552.76008
[24] Rajagopal, K. R.; Kaloni, P. N.: Some remarks on boundary conditions for fluids of differential type. Continuum mechanics and its applications (1989) · Zbl 0706.76008
[25] Rajagopal, K. R.: Boundedness and uniqueness of fluids of the differential type. Acta cienca, indica 18, 1 (1982) · Zbl 0555.76011
[26] Rajagopal, K. R.; Szeri, A. Z.; Troy, W.: An existence theorem for the flow of a non-Newtonian fluid past an infinite porous plate. Int. J. Non-linear mech. 21, 279 (1986) · Zbl 0599.76013
[27] Miller, K. S.; Ross, B.: An introduction to the fractional calculus and fractional differential equations. (1993) · Zbl 0789.26002
[28] Samko, S. G.; Kilbas, A. A.; Marichev, O. I.: Fractional integrals and derivatives: theory and applications. (1993) · Zbl 0818.26003
[29] Palade, L. I.; Attane, P.; Huilgol, R. R.; Mena, B.: Anomalous stability behavior of a properly invariant constitutive equation which generalises fractional derivative models. Int. J. Engng. sci. 37, 315 (1999) · Zbl 1210.76021
[30] Rossikhin, Y. A.; Shitikova, M. V.: A new method for solving dynamical problems of fractional derivative viscoelasticity. Int. J. Engng. sci. 39, 149 (2001) · Zbl 1026.74040
[31] Tan, W. C.; Xu, M. Y.: The impulsive motion of flat plate in a generalized second grade fluid. Mech. res. Comm. 29, 3 (2002) · Zbl 1151.76368
[32] Wenchang, T.; Feng, X.; Lan, W.: An exact solution of unsteady Couette flow of generalized second grade fluid. Chinese sci. Bull. 47, 1783 (2002)
[33] Wenchang, T.; Wenxiao, P.; Mingyu, X.: A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates. Int. J. Non-linear mech. 38, 615 (2003) · Zbl 05138171
[34] Hilfer, R.: Applications of fractional calculus in physics. (2000) · Zbl 0998.26002
[35] Rivlin, R. S.; Ericksen, J. L.: Stress deformation relations for isotropic materials. J. rat. Mech. anal. 4, 323 (1955) · Zbl 0064.42004
[36] Dunn, J. E.; Rajagopal, K. R.: Thermodynamics, stability and boundedness of fluids of complexity 2 and fluids of second grade. Arch. rat. Mech. anal. 56, 191 (1974) · Zbl 0324.76001
[37] Dunn, J. E.; Rajagopal, K. R.: Fluids of differential type-critical review and thermodynamic analysis. Int. J. Engng. sci. 33, 689 (1995) · Zbl 0899.76062
[38] Fosdick, R. L.; Rajagopal, K. R.: Uniqueness and drag for fluids of second grade in steady motion. Int. J. Non-lin. Mech. 13, 131 (1978) · Zbl 0392.76005