zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Simple and complex adjustment dynamics in Cournot duopoly models. (English) Zbl 1080.91541
Summary: We are investigating microeconomic foundations of Cournot duopoly games such that the reaction functions are unimodal. We demonstrate that cost functions incorporating an interfirm externality lead to a system of coupled logistic equations. In the situation where agents take turns, we observe periodic and complex behavior. A closer analysis reveals some well-known local bifurcations. In a more general situation, where agents move simultaneously, we observe global bifurcations which typically occur in two-parameter families of two-dimensional endomorphisms.

MSC:
91B62Growth models in economics
91A40Game-theoretic models
WorldCat.org
Full Text: DOI
References:
[1] Fudenberg, D.; Tirole, J.: Game theory. (1991) · Zbl 0596.90015
[2] Rand, D.: Exotic phenomena in games and duopoly models. J. math. Econ. 5, 173-184 (1978) · Zbl 0393.90014
[3] Poston, T.; Stewart, I.: Catastrophe theory and its applications. (1978) · Zbl 0382.58006
[4] Schaffer, S.: Chaos, naivete, and consistent conjectures. Econ. lett. 14, 155-162 (1984) · Zbl 1273.91306
[5] Halligan, W.; Joerding, W.: Polymorphic equilibrium in advertising. Bell J. Econ. 14, 191-201 (1983)
[6] Puu, T.: Chaos in duopoly pricing. Chaos, solitons & fractals 1, 573-581 (1991) · Zbl 0754.90015
[7] Puu, T.: The chaotic duopolists revisited. Department of economics. (1995)
[8] Dana, R. -A.; Montrucchio, L.: Dynamic complexity in duopoly games. J. econ. Theory 40, 40-56 (1986) · Zbl 0617.90104
[9] Furth, D.: Stability and instability in oligopoly. J. econ. Theory 40, 197-228 (1986) · Zbl 0627.90011
[10] Lopez-Ruiz, R.; Perez-Garcia, C.: Dynamics of maps with a global multiplicative coupling. Chaos, solitons & fractals 1, 511-528 (1991) · Zbl 0810.58022
[11] Lopez-Ruiz, R.; Perez-Garcia, C.: Dynamics of two logistic maps with a multiplicative coupling. Int. J. Bifur. chaos 2, 421-425 (1992) · Zbl 0874.58015
[12] Yuan, J. -M.; Tung, M.; Feng, D. H.; Narducci, L. M.: Instability and irregular behavior of coupled logistic equations. Phys. rev. A 28, 1662-1666 (1983)
[13] Hogg, T.; Huberman, B. A.: Generic behavior of coupled oscillators. Phys. rev. A 29, 275-281 (1984)
[14] Schult, R. L.; Creamer, D. B.; Henyey, F. S.; Wright, J. A.: Symmetric and nonsymmetric coupled logistic maps. Phys. rev. A 35, 3115-3118 (1987)
[15] Frank, R. H.: 2nd ed. Microeconomics and behavior. Microeconomics and behavior (1994)
[16] Cournot, A.: Translated as researches into the mathematical principles of the theory of wealth. Researches into the mathematical principles of the theory of wealth (1963) · Zbl 28.0211.07
[17] Gibbons, R.: 2nd edn. Games theory for applied economists. Games theory for applied economists (1992)
[18] Gardner, R.: Games for business and economics. (1995)
[19] Theocharis, R. D.: On the stability of the cournot solution on the oligopoly problem. Rev. econ. Stud. 27, 133-134 (1959)
[20] Okuguchi, K.: Expectations and stability in oligopoly models. Lecture notes in economics and mathematical systems 138 (1976) · Zbl 0339.90010
[21] Friedman, J. W.: Oligopoly and the theory of games. (1977) · Zbl 0385.90001
[22] Milgrom, P.; Roberts, J.: Adaptive and sophisticated learning in normal form games. Games econ. Behav. 3, 82-100 (1991) · Zbl 0751.90093
[23] Dana, R. -A.; Montrucchio, L.: On rational strategies in infinite horizon models where agents discount the future. J. econ. Behav. organiz. 8, 497-511 (1987)
[24] Maskin, E.; Tirole, J.: A theory of dynamic oligopoly III cournot competition. Eur. econ. Rev. 31, 947-968 (1987)
[25] Maskin, E.; Tirole, J.: A theory of dynamic oligopoly I: Overview and quantity competition with large fixed costs. Econometrica 56, 549-569 (1988) · Zbl 0657.90029
[26] Maskin, E.; Tirole, J.: A theory of dynamic oligopoly II: Price competition, kinked demand curve, and edgeworth cycles. Econometrica 56, 571-599 (1988) · Zbl 0664.90023
[27] Kopel, M.: Improving the performance of an economic system: controlling chaos. (1995)
[28] Loskutov, A. Y.; Shishmarev, A. I.: Control of dynamical systems behavior by parametric perturbations. Chaos 4, 391-395 (1992) · Zbl 1055.37543
[29] Kopel, M.: Periodic and chaotic behavior of a simple R&D model. Ricerche economique 50, 235-265 (1996) · Zbl 0870.90037
[30] Aronson, D. G.; Chory, M. A.; Hall, G. R.; Mcgehee, R. P.: Bifurcations from an invariant circle for two-parameter families of maps of the plane: A computer-assisted study. Commun. math. Phys. 83, 303-354 (1982) · Zbl 0499.70034
[31] Gardini, L.; Abraham, R.; Record, R. J.; Fournier-Prunaret, D.: A double logistic map. Int. J. Bifur. chaos 4, 145-176 (1994) · Zbl 0870.58020
[32] Cox, J. C.; Walker, M.: Learning to play cournot duopoly strategies. (1994)