Feyel, D.; de La Pradelle, A. Hausdorff measures on the Wiener space. (English) Zbl 1081.28500 Potential Anal. 1, No. 2, 177-189 (1992). Summary: We construct a Hausdorff measure of finite co-dimension on the Wiener space. We then extend the Federer co-area formula to this Wiener space for functions with the sole condition that they belong to the first Sobolev space. An explicit formula for the density of the images of the Wiener measure under such functions follows naturally from this. As a corollary, this yields a new and easy proof of the Krée-Watanabe theorem concerning the regularity of the images of the Wiener measure. Cited in 26 Documents MSC: 28A75 Length, area, volume, other geometric measure theory 28C20 Set functions and measures and integrals in infinite-dimensional spaces (Wiener measure, Gaussian measure, etc.) 46G12 Measures and integration on abstract linear spaces 60H07 Stochastic calculus of variations and the Malliavin calculus Keywords:Hausdorff measures; Wiener measures; Gaussian measures; Sobolev spaces; Malliavin calculus × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Airault H., and Malliavin P.: Intégration géométrique sur l’espace de Wiener,Bull. des Sciences Math. 112(1) (1988), 25–74. [2] Bouleau, N., and Hirsch, F.: Propriétés d’absolue continuité dans les espaces de Dirichlet et applications aux équations différentielles stochastiques,Lecture Notes in Maths., no. 1026, Springer. [3] Dellacherie C., and Meyer P. A..Probabilités et potentiel, Ch. I–IV. Hermann, ASI 1372, Paris, 1975. [4] Federer, H.:Geometric measure theory, Springer, Grundleheren der Math. Wissenschaften, no. 153, 1969. · Zbl 0176.00801 [5] Feyel D., and de La Pradelle A.: Espaces de Sobolev gaussiens,Ann. Inst. Fourier 39(4) (1989), 875–908. · Zbl 0664.46028 [6] Feyel D., and de La Pradelle A.: Capacités gaussiennes,Ann. Inst. Fourier 41(1) (1991), 49–76. · Zbl 0735.46018 [7] Feyel D., and de La Pradelle A.: Mesures de Hausdorff de codimension finie sur l’espace de Wiener,CRAS Paris 310(I) (1990), 153. · Zbl 0739.28003 [8] Feyel, D., and de La Pradelle, A.:Opérateurs linéaires gaussiens (to appear). [9] Havin, V. P., and Maz’ja, V. G.: A nonlinear analogue of the newtonian potential and metric properties of the (p, l)-capacity,Soviet Math. Dokl 11(5) (1970). [10] Krée P.: RégularitéC des lois conditionnelles par rapport à certaines variables aléatoires,CRAS Paris 296(I) (1983), 223. [11] Krée P.: Calcul vectoriel des variations stochastiques par rapport à une mesure de probabilitéH fixée,CRAS Paris 300(I, 15) (1985), 557. [12] Malliavin, P.: Stochastic calculus of variation and hypoelliptic operator, Proc. int. Symp. on S.D.E., 1976, Kyoto, Tokyo, 1978. [13] Malliavin, P.: Implicit functions in finite corank, Taniguchi Symp. Stoch. Anal. Katata, Kyoto, 1982. [14] Meyer, P. A.: Transformations de Riesz pour les lois gaussiennes, Sém. Proba. XVIII,Lect. Notes in Maths no. 1059, Springer. · Zbl 0543.60078 [15] Mokobodzki, G.: Capacités fonctionnelles, Séminaire Choquet d’initiation à l’Analyse, 1966–67, f. 1, exposé 1, Université Paris VI, 2. [16] Sugita H.: Positive generalized Wiener functions and potential theory over abstract Wiener spaces,Osaka Journal of Maths. 25 (1988), 665–696. · Zbl 0737.46038 [17] Watanabe S.:Stochastic Differential Equations and Malliavin Calculus, Tata Inst. of fund. research., Bombay, 1984. · Zbl 0546.60054 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.