zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Certain properties of the Dziok--Srivastava operator. (English) Zbl 1081.30021
Making use of Hadamard product (or convolution), a certain linear operator $H_{p,q,s}(\alpha _1)$ was recently introduced and studied in a series of papers by Dziok and Srivastava. In this paper, some other properties of the operator $H_{p,q,s}(\alpha _1)$ are derived with the help of differential subordination.

MSC:
30C45Special classes of univalent and multivalent functions
30C50Coefficient problems for univalent and multivalent functions
WorldCat.org
Full Text: DOI
References:
[1] Dziok, J.; Srivastava, H. M.: Classes of analytic functions associated with the generalized hypergeometric function. Appl. math. Comput 103, 1-13 (1999) · Zbl 0937.30010
[2] Dziok, J.; Srivastava, H. M.: Some subclasses of analytic functions with fixed argument of coefficients associated with the generalized hypergeometric function. Adv. stud. Contemp. math 5, 115-125 (2002) · Zbl 1038.30009
[3] Dziok, J.; Srivastava, H. M.: Certain subclasses of analytic functions associated with the generalized hypergeometric function. Integral transform. Spec. funct 14, 7-18 (2003) · Zbl 1040.30003
[4] Gangadharan, A.; Shanmugam, T. N.; Srivastava, H. M.: Generalized hypergeometric functions associated with k-uniformly convex functions. Comput. math. Appl 44, 1515-1526 (2002) · Zbl 1036.33003
[5] Kim, Y. C.; Srivastava, H. M.: Fractional integral and other linear operators associated with the Gaussian hypergeometric function. Complex variables theory appl 34, 293-312 (1997) · Zbl 0951.30010
[6] Liu, J. -L.: Strongly starlike functions associated with the dziok--Srivastava operator. Tamkang J. Math 35 (2004) · Zbl 1064.30006
[7] Liu, J. -L.; Srivastava, H. M.: Classes of meromorphically multivalent functions associated with the generalized hypergeometric function. Math. comput. Modelling 38 (2004) · Zbl 1049.30008
[8] Miller, S. S.; Mocanu, P. T.: Differential subordinations and univalent functions. Michigan math. J 28, 157-171 (1981) · Zbl 0439.30015
[9] S.S. Miller, P.T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker, New York, 2000
[10] Owa, S.; Srivastava, H. M.: Univalent and starlike generalized hypergeometric functions. Canad. J. Math 39, 1057-1077 (1987) · Zbl 0611.33007
[11] Srivastava, H. M.; Owa, S.: Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric functions, Hadamard products, linear operators, and certain subclasses of analytic functions. Nagoya math. J 106, 1-28 (1987) · Zbl 0607.30014
[12] Srivastava, H. M.; Owa, S.: Univalent functions, fractional calculus, and their applications. (1989) · Zbl 0683.00012
[13] Srivastava, H. M.; Owa, S.: Current topics in analytic function theory. (1992) · Zbl 0976.00007