zbMATH — the first resource for mathematics

On a spectral analysis for the Sierpiński gasket. (English) Zbl 1081.31501
Summary: A complete description of the eigenvalues of the Laplacian on the finite Sierpinski gasket is presented. We then demonstrate highly oscillatory behaviours of the distribution function of the eigenvalues, the integrated density of states (for the infinite gasket) and the spectrum of the Laplacian on the infinite gasket. The method has two ingredients: the decimation method in calculating eigenvalues due to Rammal and Toulouse and a simple description of the Dirichlet form associated with the Laplacian.

31C25 Dirichlet forms
47B99 Special classes of linear operators
Full Text: DOI
[1] Barlow, M. T. and Perkins, E. A.: Brownian motion on the Sierpinski gasket, Prob. Theo. Rel. Fields 79 (1988), 543-624. · Zbl 0635.60090 · doi:10.1007/BF00318785
[2] Brolin, H.: Invariant sets under iteration of rational functions, Arkiv Matematik 6 (1965), 103-144. · Zbl 0127.03401 · doi:10.1007/BF02591353
[3] Fukushima, M.: Dirichlet Forms and Markov Processes, North-Holland/Kodansha, 1980. · Zbl 0422.31007
[4] Fakushima, M.: On recurrence criteria in the Dirichlet space theory, in From Local Times to Global Geometry, Control and Physics, ed. by K. D. Elworthy, Pitman Research Notes in Math., Longman, 1986, pp. 100-110.
[5] Kigami, J.: A harmonic calculus on the Sierpinski spaces, Japan. J. Appl. Math. 6 (1989), 259-290. · Zbl 0686.31003 · doi:10.1007/BF03167882
[6] Kigami, J.: Harmonic calculus on P.C.F. self-similar sets, To appear in Trans. Amer. Math. Soc. · Zbl 0773.31009
[7] Kusuoka, S.: A diffusion process on a fractal, in Probabilistic Methods in Mathematical Physics, Proc. of Taniguchi International Symp. (Katata and Kyoto, 1988), ed. by K. Ito and N. Ikeda, Kinokuniya/North-Holland, 1987, pp. 251-274. · Zbl 0645.60081
[8] Kusuoka, S.: Dirichlet forms on fractals and products of random matrices, Publ. Res. Inst. Math. Sci. 25 (1989), 659-680. · Zbl 0694.60071 · doi:10.2977/prims/1195173187
[9] Lindstrøm, T.: Brownian motion on nested fractals, Memoir AMS, Vol. 83, No. 420, 1990. · Zbl 0688.60065
[10] Rammal, R. and Toulouse, G.: Random walks on fractal structures and percolation clustars, J. Physique Lett. 43 (1982), L13-L22.
[11] Rammal, R.: Spectrum of harmonic excitations on fractals, J. Physique 45 (1984), 191-206. · doi:10.1051/jphys:01984004502019100
[12] Shima, T.: On eigenvalue problems for the random walks on the Sierpinski pre-gaskets, Japan J. Indus. Appl. Math. 8 (1991), 127-141. · Zbl 0715.60088 · doi:10.1007/BF03167188
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.