Gordeziani, D. G.; Avalishvili, G. A. Time-nonlocal problems for Schrödinger type equations. I: Problems in abstract spaces. (English. Russian original) Zbl 1081.35004 Differ. Equ. 41, No. 5, 703-711 (2005); translation from Differ. Uravn. 41, No. 5, 670-677 (2005). Summary: Papers in which time-nonlocal problems are considered mainly deal with specific nonlocal initial conditions. We consider time-nonlocal problems for an abstract Schrödinger equation with various nonlocal operators and construct an algorithm approximating such problems of a certain class by a sequence of classical problems. Cited in 1 ReviewCited in 15 Documents MSC: 35A05 General existence and uniqueness theorems (PDE) (MSC2000) 34G10 Linear differential equations in abstract spaces 47D06 One-parameter semigroups and linear evolution equations Keywords:abstract Schrödinger equation; nonlocal operators; nonlocal initial condition PDF BibTeX XML Cite \textit{D. G. Gordeziani} and \textit{G. A. Avalishvili}, Differ. Equ. 41, No. 5, 703--711 (2005; Zbl 1081.35004); translation from Differ. Uravn. 41, No. 5, 670--677 (2005) Full Text: DOI References: [1] Bitsadze, A.V. and Samarskii, A.A., Dokl. Akad. Nauk SSSR, 1969, vol. 185, no.4, pp. 739–740. [2] Gordeziani, D.G., Sem. IPM TGU: Annot. dokl., 1970, no. 2, pp. 39–41. [3] Gordeziani, D.G. and Dzhioev, T.Z., Soobshch. Akad. Nauk GSSR, 1972, vol. 68, no.2, pp. 289–292. [4] Gordeziani, D.G. and Avalishvili, G.A., Appl. Math. and Inform., 1997, vol. 2, pp. 65–79. · Zbl 0972.35065 [5] Gordeziani, D.G. and Avalishvili, G.A., Mat. Modelirovanie, 2000, vol. 12, no.1, pp. 94–103. [6] Il’in, V.A. and Moiseev, E.I., Differents. Uravn., 1987, vol. 23, no.7, pp. 1198–1207. [7] Il’in, V.A. and Moiseev, E.I., Differents. Uravn., 1988, vol. 24, no.5, pp. 795–804. [8] Il’in, V.A. and Moiseev, E.I., Mat. Modelirovanie, 1990, vol. 2, no.8, pp. 139–156. [9] Il’in, V.A. and Moiseev, E.I., Differents. Uravn., 2000, vol. 36, no.5, pp. 656–661. [10] Paneyakh, B.P., Mat. Zametki, 1984, vol. 35, no.3, pp. 425–433. [11] Skubachevskii, A.L., Mat. Sb., 1982, vol. 117, no.4, pp. 548–558. [12] Gordeziani, D.G., Rep. of Enlarged Sess. of the Sem. of I. Vekua Inst. Appl. Math., 1989, no. 4, pp. 57–60. [13] Gordeziani, D.G. and Grigalashvili, Z., Rep. of Sem. of I. Vekua Inst. Appl. Math., 1993, vol. 22, pp. 108–114. [14] Pao, C.V., J. Math. Anal. Appl., 1995, vol. 195, no.3, pp. 702–718. · Zbl 0851.35063 [15] Shelukhin, V.V., Din. Sploshn. Sredy, 1993, no. 107, pp. 180–193. [16] Schwartz, L., Ann. Inst. Fourier, 1957, vol. 7, pp. 1–141. [17] Lions, J.-L. and Magenes, E., Problemes aux limites non homogenes et applications, Paris: Dunod, 1968. Translated under the title Neodnorodnye granichnye zadachi i ikh prilozheniya, Moscow: Mir, 1971. [18] McLean, W., Strongly Elliptic Systems and Boundary Integral Equations, Cambridge, 2000. · Zbl 0948.35001 [19] Dautray, R. and Lions, J.-L., Analyse mathematique et calcul numerique pour les sciences et les techniques, Paris, 1988, vol. 8. [20] Schwartz, L., Analyse mathematique, Paris: Hermann, 1967. Translated under the title Analiz, Moscow: Mir, 1972, vol. 1. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.