zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Attractor merging crisis in chaotic business cycles. (English) Zbl 1081.37058
The present paper shows that chaotic transitions, such as the attractor merging crisis, are a fundamental feature of nonlinear business cycles. The crisis diagram for the attractor merging crises is studied, which summarizes the system dynamics leading to the onset of crisis. The onset of an attractor merging crisis is characterized using the tools of unstable periodic orbits and their associated stable and unstable manifolds. Mathematical modelling presented in the paper of crisis can deepen our understanding of sudden major changes of economic variables often encountered in business cycles.

37N40Dynamical systems in optimization and economics
37D45Strange attractors, chaotic dynamics
37C27Periodic orbits of vector fields and flows
91B62Growth models in economics
37C70Attractors and repellers, topological structure
Full Text: DOI
[1] Gabisch, G.; Lorenz, H. W.: Business cycle theory: a survey of methods and concepts. (1987) · Zbl 0686.90002
[2] Puu, T.: Nonlinear economic dynamics. (1989) · Zbl 0695.90002
[3] Lorenz, H. W.: Nonlinear dynamical economics and chaotic motion. (1989) · Zbl 0717.90001
[4] Goodwin, R. M.: Chaotic economic dynamics. (1990)
[5] Gandolfo, G.: Economic dynamics. (1997) · Zbl 1177.91094
[6] Mosekilde, E.; Larsen, E. R.; Sterman, J. D.; Thomsen, J. S.: Nonlinear mode-interaction in the macroeconomy. Ann. oper. Res. 37, 185-215 (1992) · Zbl 0800.90147
[7] Szydlowski, N.; Krawiec, A.; Tobola, J.: Nonlinear oscillations in business cycle model with time lags. Chaos, solitons, & fractals 12, 505-517 (2001)
[8] Puu, T.; Sushko, I.: A business cycle model with cubic nonlinearity. Chaos, solitons, & fractals 19, 597-612 (2004) · Zbl 1068.91054
[9] Grebogi, C.; Ott, E.; York, J. A.: Crises, sudden changes in chaotic attractors, and transient chaos. Physica D 7, 181-200 (1983) · Zbl 0561.58029
[10] Grebogi, C.; Ott, E.; Romerias, F.; Yorke, J. A.: Critical exponents for crisis-induced intermittency. Phys. rev. A 36, 5365-5380 (1987)
[11] Chian, A. C. L.; Borotto, F. A.; Rempel, E. L.: Alfvén boundary crisis. Int. J. Bifurcat. chaos 12, 1653-1658 (2002) · Zbl 1051.76071
[12] Chian, A. C. L.; Rempel, E. L.; Macau, E. E.; Rosa, R. R.; Christiansen, F.: High-dimensional interior crisis in the Kuramoto-Sivashinsky equation. Phys. rev. E 65, 035203(R) (2002)
[13] Borotto, F. A.; Chian, A. C. L.; Rempel, E. L.: Alfvén interior crisis. Int. J. Bifurcat. chaos 14, 2375-2380 (2004) · Zbl 1069.76059
[14] Chian, A. C. L.: Nonlinear dynamics and chaos in macroeconomics. Int. J. Theoret. appl. Finan. 3, 601 (2001)
[15] Wolf, A.; Swift, J. B.; Swinney, H. L.; Vastano, J. A.: Determining Lyapunov exponents from a time series. Physica D 16, 285-317 (1985) · Zbl 0585.58037
[16] Parker, T. S.; Chua, L. O.: Practical numerical algorithms for chaotic systems. (1989) · Zbl 0692.58001
[17] Ott, E.: Chaos in dynamical systems. (1993) · Zbl 0792.58014