Static and time-dependent perturbations of the classical elliptical billiard. (English) Zbl 1081.37530

Summary: The elliptical billiard problem defines a two-dimensional integrable discrete dynamical system. Integrability not being a robust property, we study some static and time-dependent perturbations of this problem. For the static case, we observe the transition from integrability to chaos, on some perturbations of the ellipse. Then we study time-dependent perturbations, supposing that the boundary deforms periodically with the time, remaining always an ellipse. We investigate numerically the now four-dimensional phase space, looking mainly at the question of whether or not the velocity of a given trajectory may increase indefinitely.


37J45 Periodic, homoclinic and heteroclinic orbits; variational methods, degree-theoretic methods (MSC2010)
70H99 Hamiltonian and Lagrangian mechanics
70K20 Stability for nonlinear problems in mechanics
82C05 Classical dynamic and nonequilibrium statistical mechanics (general)
Full Text: DOI


[1] W. P. Barth, Elliptic moduli curves and Poncelet polygons, Advanced Workshop on Algebraic Geometry, ICTP, Trieste, Italy (1994).
[2] M. V. Berry, Regularity and chaos in classical mechanics, illustrated by three deformations of a circular billiard,Eur. J. Phys. 2:91–102 (1981). · doi:10.1088/0143-0807/2/2/006
[3] L. A. Bunimovich, On absolutely focusing mirrors, inErgodic Theory and Related Topics, U. Kringel et al., eds. (Springer, Berlin, 1993); L. A. Bunimovich, Conditions on stochasticity of two-dimensional billiards,Chaos 1:187–193 (1991).
[4] E. Canale and R. Markarian, Simulación de billares planos, inAnales IEEE, Segundo Seminario de Informática en el Uruguay (1991), pp. 71–96; and private communication.
[5] S.-J. Chang and R. Friedberg, Elliptical billiards and Poncelet’s theorem,J. Math. Phys. 29(7):1537–1550 (1988). · Zbl 0663.70015 · doi:10.1063/1.527900
[6] V. J. Donnay, Using integrability to produce chaos: Billiards with positive entropy,Commun. Math. Phys. 141:225–257 (1991). · Zbl 0744.58041 · doi:10.1007/BF02101504
[7] R. Douady, Applications du théorème des tores invariants, Thèse de 3ème Cycle, Université Paris VII (1982).
[8] J. Koiller, R. Markarian, S. Oliffson Kamphorst, and S. Pinto de Carvalho, A geometric framework for time-dependent billiards, inNew Trends in Hamiltonian Systems (World Scientific, Singapore, to appear). · Zbl 0980.37016
[9] J. Koiller, R. Markarian, S. Oliffson Kamphorst, and S. Pinto de Carvalho, Time-dependent Billiards, Preprint (1994);Nonlinearity, to appear. · Zbl 0841.58024
[10] T. Krüger, L. D. Pustyl’nikov, and S. E. Troubetzkoy, Acceleration of bouncing balls in external fields,Nonlinearity 8:397–410 (1995). · Zbl 0826.70013 · doi:10.1088/0951-7715/8/3/006
[11] N. Kutz and E. Zorn, Adiabatische Invarianten und Hannay-Winkel im reichteckigen Billard, Studienarbeit, Technischen Universität Berlin (1988).
[12] S. Laederich and M. Levi, Invariant curves and time dependent potentials,Ergodic Theory Dynam. Syst. 11:365–378 (1991). · Zbl 0742.34050 · doi:10.1017/S0143385700006192
[13] P. Levallois, Non-integrabilité des billiards définis par certaines perturbations algébriques d’une ellipse et du flot géodesique de certaines perturbations algébriques d’un ellipsoide, Thèse, Université Paris VII (1993).
[14] P. Levallois and M. B. Tabanov, Séparation des séparatrices du billiard elliptique pour une perturbation algébrique et symétrique de l’ellipse,C. R. Acad. Sci. Paris I 316:589–592 (1993). · Zbl 0780.58039
[15] M. Levi, Quasiperiodic motions in superquadratic time-periodic potentials,Commun. Math. Phys. 143:43–83 (1991). · Zbl 0744.34043 · doi:10.1007/BF02100285
[16] A. J. Lichtenberg and M. A. Liebermann,Regular and Stochastic Motion (Springer-Verlag, Berlin, 1983). · Zbl 0506.70016
[17] C. Liverani and M. Wojtkowski, Ergodicity in Hamiltonian systems, SUNY, Stony Brook, Preprint (1992). · Zbl 0824.58033
[18] R. Markarian, New ergodic billiards: Exact results,Nonlinearity 6:819–841 (1993). · Zbl 0788.58034 · doi:10.1088/0951-7715/6/5/009
[19] R. Markarian, S. Oliffson Kamphorst, and S. Pinto de Carvalho, Chaotic properties of the elliptical stadium, preprint (1994);Commun. Math. Phys., to appear. · Zbl 0843.58084
[20] J. Mather, Glancing billiards,Ergodic Theory Dynam. Syst. 2:397–403 (1982). · Zbl 0525.58021 · doi:10.1017/S0143385700001681
[21] L. D. Pustyl’nikov, Stable and oscillating motions in nonautonomous dynamical systems II.Trans. Moscow Math. Soc. 2:1–101 (1978).
[22] Ya. G. Sinai,Introduction to Ergodic Theory (Princeton University Press, Princeton, New Jersey, 1976). · Zbl 0375.28011
[23] S. Tabachnikov, Billiards, Preprint, University of Arkansas (1994); in ”Panoramas et Synthèses,” SMF, to appear.
[24] M. B. Tabanov, Splitting of separatrices for Birkhoff’s billiard under symmetrical perturbation of an ellipse, inRencontres Franco-Russes de Géometrie (CIRM, France, 1992).
[25] M. Wojtkowski, Principles for the design of billiards with non vanishing Lyapunov exponents,Commun. Math. Phys. 105:391–414 (1986). · Zbl 0602.58029 · doi:10.1007/BF01205934
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.