Muroya, Yoshiaki Partial survival and extinction of species in discrete nonautonomous Lotka-Volterra systems. (English) Zbl 1081.39014 Tokyo J. Math. 28, No. 1, 189-200 (2005). Consider the following discrete model of a nonautonomous Lotka-Volterra system, \[ N_i(p+1)=N_i(p)\exp \biggl\{c_i(p)-\sum_{j=1}^n \sum_{l=0}^m a_{ij}^l (p)N_j(p-k_l)\biggr\}, \quad p\geq 0, \;1\leq i\leq n, \] with \[ N_i(p)=N_{ip}\geq 0, \;p\leq 0, \quad \text{and}\quad N_{i0}>0, \;1\leq i\leq n, \] which is the discrete version of the system considered by Y. Muroya [Dyn. Syst. Appl. 12, No. 3–4, 295–306 (2003; Zbl 1044.92049)]. The author studies the partial survial and extinction of species. These results extend those of S. Ahmad [Proc. Am. Math. Soc. 127, No. 10, 2905–2910 (1999; Zbl 0924.34040)] to discrete nonautonomous Lotka-Volterra systems. Reviewer: Yuming Chen (Waterloo) Cited in 7 Documents MSC: 39A12 Discrete version of topics in analysis 92D25 Population dynamics (general) Keywords:discrete model; nonautonomous Lotka-Volterra system; partial survial; extinction; delay Citations:Zbl 1044.92049; Zbl 0924.34040 PDF BibTeX XML Cite \textit{Y. Muroya}, Tokyo J. Math. 28, No. 1, 189--200 (2005; Zbl 1081.39014) Full Text: DOI OpenURL References: [1] S. Ahmad, On the nonautonomous Volterra-Lotka competition equations , Proc. Amer. Math. Soc. 117 (1993), 199-204. · Zbl 0848.34033 [2] S. Ahmad, Extinction of species in nonautonomous Lotka-Volterra systems , Proc. Amer. Math. Soc. 127 (1999), 2905-2910. · Zbl 0924.34040 [3] S. Ahmad and A. C. Lazer, On the nonautonomous N-competing species problem , Applicable Anal. 57 (1995), 209-323. · Zbl 0859.34033 [4] S. Ahmad and A. C. Lazer, Necessary and sufficient average growth in a Lotka-Volterra system , Nonlinear Analysis TMA 34 (1998), 191-228. · Zbl 0934.34037 [5] S. Ahmad and A. C. Lazer, Average conditions for global asymptotic stability in a nonautonomous Lotka-Volterra system , Nonlinear Analysis TMA 40 (2000), 37-49. · Zbl 0955.34041 [6] S. Ahmad and F. Montes de Oca, Extinction in nonautonomous T-periodic competitive Lotka-Volterra systems , Appl. Math. Comput. 90 (1998), 155-166. · Zbl 0906.92024 [7] C. Alvarez and A. C. Lazer, An application of topological degree to the periodic competing species problem , J. Austral. Math. Soc. Ser. B 28 (1986), 202-219. · Zbl 0625.92018 [8] A. Battauz and F. Zanolin, Coexistence states for periodic competitive Kolmogorov systems , J. Math. Anol. Appl. 219 (1998), 179-199. · Zbl 0911.34037 [9] K. Gopalsamy, Exchange of equilibria in two species Lotka-Volterra competition models , J. Austral. Math. Soc. Ser B 24 (1982), 160-170. · Zbl 0498.92016 [10] K. Gopalsamy, Global asymptotic stability in a periodic Lotka-Volterra system , J. Austral. Math. Soc. Ser B 27 (1985), 66-72. · Zbl 0588.92019 [11] Y. Muroya, Persistence and global stability for discrete models of nonautonomous Lotka-Volterra type , J. Math. Anal. Appl. 273 (2002), 492-511. · Zbl 1033.39013 [12] Y. Muroya, Averaged growth and global stability in nonautonomous Lotka-Volterra system with delays , Communications on Applied Nonlinear Analysis 10 (2003), 35-54. · Zbl 1058.34102 [13] Y. Muroya, Partial survival and extinction of species in nonautonomous Lotka-Volterra systems with delays , Dynamic Systems and Applications 12 (2003), 295-306. · Zbl 1044.92049 [14] F. Montes de Oca and M. L. Zeeman, Extinction in nonautonomous competitive Lotka-Volterra systems , Proc. Amer. Math. Soc. 124 (1996), 3677-3687. · Zbl 0866.34029 [15] R. Ortega and A. Tineo, An exclusion principle for periodic competitive Lotka-Volterra systems in three dimensions , Nonlinear Anal. TMA 31 (1998), 883-893. · Zbl 0901.34049 [16] R. Redheffer, Nonautonomous Lotka-Volterra system I , J. Differential Equations 127 (1996), 519-540. · Zbl 0856.34056 [17] R. Redheffer, Nonautonomous Lotka-Volterra system II , J. Differential Equations 127 (1996), 1-20. · Zbl 0864.34043 [18] A. Tineo and C. Alvarez, A different consideration about the globally asymptotically stable solution of the periodic \( n \)-competing species problem , J. Math. Anal. Appl. 159 (1991), 44-60. · Zbl 0729.92025 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.