×

w\(^*\)-basic sequences and reflexivity of Banach spaces. (English) Zbl 1081.46017

Summary: We observe that a separable Banach space \(X\) is reflexive iff each of its quotients with Schauder basis is reflexive. Similarly, if \(\mathcal L(X,Y)\) is not reflexive for reflexive \(X\) and \(Y\), then \(\mathcal L(X_1, Y)\) is not reflexive for some \(X_1\subset X\), \(X_1\) having a basis.

MSC:

46B28 Spaces of operators; tensor products; approximation properties
PDF BibTeX XML Cite
Full Text: DOI EuDML Link

References:

[1] W. J. Davis and J. Lindenstrauss: On total nonnorming subspaces. Proc. Amer. Math. Soc. 31 (1972), 109–111. · Zbl 0256.46025
[2] J. Diestel: Sequences and Series in Banach Spaces. Springer-Verlag, Berlin-Heidelberg-New York, 1984. · Zbl 0542.46007
[3] M. Fabian, P. Habala, P. Hajek, J. Pelant, V. Montesinos and V. Zizler: Functional Analysis and Infinite Dimensional Geometry. Springer-Verlag, New York, 2001. · Zbl 0981.46001
[4] S. Heinrich: On the reflexivity of the Banach space L(X, Y). Funkts. Anal. Prilozh. 8 (1974), 97–98. (In Russian.)
[5] J. R. Holub: Reflexivity of L(E, F). Proc. Amer. Math. Soc. 39 (1974), 175–177.
[6] H. Jarchow: Locally Convex Spaces. Teubner-Verlag, Stuttgart, 1981. · Zbl 0466.46001
[7] W. B. Johnson and H. P. Rosenthal: On w* basic sequences and their applications to the study of Banach spaces. Studia Math. 43 (1972), 77–92. · Zbl 0213.39301
[8] J. Lindenstrauss and L. Tzafriri: Classical Banach Spaces I. Sequence Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete 92. Springer-Verlag, Berlin-Heidelberg-Berlin, 1977. · Zbl 0362.46013
[9] J. Mujica: Reflexive spaces of homogeneous polynomials. Bull. Polish Acad. Sci. Math. 49 (2001), 211–222. · Zbl 1068.46027
[10] A. Pelczynski: A note on the paper of I. Singer ”Basic sequences and reflexivity of Banach spaces”. Studia Math. 21 (1962), 371–374. · Zbl 0114.30904
[11] V. Ptak: Biorthogonal systems and reflexivity of Banach spaces. Czechoslovak Math. J. 9 (1959), 319–325. · Zbl 0114.30901
[12] W. Ruckle: Reflexivity of L(E, F). Proc. Am. Math. Soc. 34 (1972), 171–174.
[13] I. Singer: Basic sequences and reflexivity of Banach spaces. Studia Math. 21 (1962), 351–369. · Zbl 0114.30903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.