×

Rigidity and polynomial invariants of convex polytopes. (English) Zbl 1081.52012

Using ideas from algebraic geometry and delicate calculations, the authors introduce an algebraic approach to problems of rigidity of convex polytopes in great generality by establishing polynomial invariants that satisfy polynomial relations in terms of squared edge-lengths of these polytopes. On this way constructions of simplicial convex polytopes from a given triangulation and given edge-lengths are described. Sharp upper and lower bounds on the degree of these polynomial relations are obtained, and a number of examples and special cases are studied (for regular bipyramids even explicit formulae for some of these relations are derived). Furthermore, the authors conclude with a proof of the Robbins conjecture on the degree of generalized Héron polynomials.

MSC:

52B10 Three-dimensional polytopes
51M20 Polyhedra and polytopes; regular figures, division of spaces
51M25 Length, area and volume in real or complex geometry
52C25 Rigidity and flexibility of structures (aspects of discrete geometry)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] A. D. Aleksandrov, Convex Polyhedra , Springer Monogr. Math., Springer, Berlin, 2005. MR 2127379
[2] -, Selected Works, Part II: Intrinsic Geometry of Convex Surfaces, Classics Soviet Math., CRC, Boca Raton, Fla., 2005.
[3] L. Asimow and B. Roth, The rigidity of graphs , Trans. Amer. Math. Soc. 245 (1978), 279–289. MR 0511410 · Zbl 0392.05026
[4] -, The rigidity of graphs, II, J. Math. Anal. Appl. 68 (1979), 171–190. MR 0531431 · Zbl 0441.05046
[5] A. V. Astrelin and I. Kh. Sabitov, A canonical polynomial for the volume of a polyhedron , Russian Math. Surveys 54 (1999), 430–431. MR 1711247 · Zbl 0941.52009
[6] M. Berger, Géométrie , Vol. 3: Convexes et polytopes, polyèdres réguliers, aires et volumes , CEDIC, Paris, 1977. MR 0536872
[7] B. BollobáS, Modern Graph Theory , Grad. Texts in Math. 184 , Springer, New York, 1998. MR 1633290
[8] Yu. Burago, M. Gromov, and G. Perelman, A. D. Aleksandrov spaces with curvature bounded below , Russian Math. Surveys 47 (1992), no. 2, 1–58. MR 1185284 · Zbl 0802.53018
[9] P. BüRgisser, M. Clausen, and M. Shokrollahi, Algebraic Complexity Theory , Grundlehren Math. Wiss. 315 , Springer, Berlin, 1997. MR 1440179 · Zbl 1087.68568
[10] R. Connelly, “Conjectures and open questions in rigidity” in Proceedings of the International Congress of Mathematicians (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, 407–414. MR 0562634 · Zbl 0434.53042
[11] -, The rigidity of certain cabled frameworks and the second-order rigidity of arbitrarily triangulated convex surfaces, Adv. in Math. 37 (1980), 272–299. MR 0591730 · Zbl 0446.51012
[12] -, “Flexing surfaces” in The Mathematical Gardner , PWS, Boston, 1981, 79–89.
[13] -, “Rigidity” in Handbook of Convex Geometry, Vols. A, B, North-Holland, Amsterdam, 1993, 223–271. MR 1242981
[14] -, Comments on generalized Heron polynomials and Robbins’ conjectures , preprint, 2004, http://www.math.cornell.edu/,\~ connelly R. Connelly, I. Sabitov, and A. Walz, The bellows conjecture , Beiträge Algebra Geom. 38 (1997), 1–10. MR 1447981 · Zbl 0939.52009
[15] H. Crapo and W. Whiteley, Statics of frameworks and motions of panel structures, a projective geometric introduction , Structural Topology 1982 , 43–82. MR 0666680 · Zbl 0533.73068
[16] N. P. Dolbilin, Pearls of Polyhedra Theorey (in Russian), MCCME, Moscow, 2000.
[17] H. Edelsbrunner, in Open Problems Presented at SCG ’98 , http://www.cs.duke.edu/,\~ pankaj/scg98-openprobs H. Gluck, “Almost all simply connected, closed surfaces are rigid” in Geometric Topology (Park City, Utah, 1974) , Lecture Notes in Math., Springer, Berlin, 1975, 225–239. MR 0400239
[18] J. Graver, B. Servatius, and H. Servatius, Combinatorial Rigidity , Grad. Studies in Math. 2 , Amer. Math. Soc., Providence, 1993. MR 1251062 · Zbl 0788.05001
[19] P. Gritzmann and V. Klee, “On the complexity of some basic problems in computational convexity, II: Volume and mixed volumes” in Polytopes: Abstract, Convex and Computational (Scarborough, Ontario, 1993) , NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 440 , Kluwer, Dordrecht, 1994, 373–466. MR 1322071 · Zbl 0819.52008
[20] J. Hadamard, Leçons de géométrie, II: Géométrie dans l’espace, Jacques Gabay, Sceaux, France, 1988. MR 1189556
[21] R. Hartshorne, Algebraic Geometry , Grad. Texts in Math. 52 , Springer, New York, 1977. MR 0463157 · Zbl 0367.14001
[22] D. Hilbert and S. Cohn-Vossen, Geometry and the Imagination , Chelsea, New York, 1952. MR 0046650 · Zbl 0047.38806
[23] M. Kapovich and J. J. Millson, Universality theorems for configuration spaces of planar linkages , Topology 41 (2002), 1051–1107. MR 1923214 · Zbl 1056.14077
[24] A. B. Kempe, How to draw a straight line , Nature 16 (1877), 65–67., 86–89.
[25] H. C. King, “Planar linkages and algebraic sets” in Proceedings of the 6th Gökova Geometry-Topology Conference , Turkish J. Math. 23 , Sci. Tech. Research Council Turkey, Ankara, 1999, 33–56. MR 1701638 · Zbl 0962.55009
[26] F. Klein, Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade , Birkhäuser, Basel, 1993; reprint of 1884 ed. MR 1315530 · JFM 16.0061.01
[27] M. Kovalev, Geometric theory of linkages , Russian Acad. Sci. Izv. Math. 44 (1995), 43–68. MR 1271514
[28] P. Landers, Dying Mathematician Spends Last Days on Area of Polygon , Wall Street Journal, July 29, 2003, 1.
[29] S. Lawrencenko, S. Negami, and I. Kh. Sabitov, A simpler construction of volume polynomials for a polyhedron , Beiträge Algebra Geom. 43 (2002), 261–273. MR 1913784 · Zbl 1043.52007
[30] F. M. Maley, D. P. Robbins, and J. Roskies, On the areas of cyclic and semicyclic polygons , Adv. in Appl. Math. 34 (2005), 669–689. MR 2128992 · Zbl 1088.52005
[31] J. Martin, Geometry of graph varieties , Trans. Amer. Math. Soc. 355 (2003), 4151–4169. MR 1990580 JSTOR: · Zbl 1029.05040
[32] -, On the topology of multigraph picture spaces , Adv. Math. 191 (2005), 312–338. MR 2103216 · Zbl 1054.05031
[33] E. Miller, “Icosahedra constructed from congruent triangles” in The Branko Grünbaum Birthday Issue, Discrete Comput. Geom. 24 , Springer, New York 2000, 437–451. MR 1758062 · Zbl 1161.52307
[34] N. MnëV, “The universality theorems on the classification problem of configuration varieties and convex polytopes varieties” in Topology and Geometry: Rohlin Seminar , Lecture Notes in Math. 1346 , Springer, Berlin, 1988, 527–543. MR 0970093 · Zbl 0667.52006
[35] I. Pak, The area of cyclic polygons: Recent progress on Robbins’ conjectures , Adv. in Appl. Math. 34 (2005), 690–696. MR 2128993 · Zbl 1088.52006
[36] D. P. Robbins, Areas of polygons inscribed in a circle , Discrete Comput. Geom. 12 (1994), 223–236. MR 1283889 · Zbl 0806.52008
[37] -, Areas of polygons inscribed in a circle , Amer. Math. Monthly 102 (1995), 523–530. MR 1336638 JSTOR: · Zbl 0853.52006
[38] L. RodríGuez and H. Rosenberg, Rigidity of certain polyhedra in \(\mathbbR^3\) , Comment. Math. Helv. 75 (2000), 478–503. MR 1793799 · Zbl 0968.52018
[39] B. Roth, Rigid and flexible frameworks , Amer. Math. Monthly 88 (1981), 6–21. MR 0619413 JSTOR: · Zbl 0455.51012
[40] B. Roth and W. Whiteley, Tensegrity frameworks , Trans. Amer. Math. Soc. 265 (1981), 419–446. MR 0610958 · Zbl 0479.51015
[41] I. Kh. Sabitov, The generalized Heron-Tartaglia formula and some of its consequences , Sb. Math. 189 (1998), 1533–1561. MR 1691297 · Zbl 0941.52020
[42] -, The volume as a metric invariant of polyhedra , Discrete Comput. Geom. 20 (1998), 405–425. MR 1651896 · Zbl 0922.52006
[43] -, Calculation of polyhedra (in Russian), Dokl. Acad. Nauk 377 (2001), 161–164. MR 1833711 · Zbl 1062.52009
[44] -, Algorithmic solution of the problem of isometric realization of two-dimensional polyhedral metrics , Izv. Math. 66 (2002), 377–391. MR 1918847 · Zbl 1076.51513
[45] -, Volumes of Polyhedra, MCCME, Moscow, 2002.
[46] J.-M. Schlenker, La conjecture des sourfflets (d’après I. Sabitov) , Astérisque 294 (2004), 77–95. MR 2111640 · Zbl 1078.52014
[47] V. V. Varfolomeev, Inscribed polygons and Heron polynomials , Sb. Math. 194 (2003), 311–331. MR 1992154 · Zbl 1067.51013
[48] -, Galois groups of Heron-Sabitov polynomials for pentagons inscribed in a circle , Sb. Math. 195 (2004), 3–16. MR 2068949 · Zbl 1064.12001
[49] W. Whiteley, “Matroids and rigid structures” in Matroid Applications in Encyclopedia Math. Appl. 40 , Cambridge Univ. Press, Cambridge, 1992, 1–53. MR 1165538 · Zbl 0768.05025
[50] G. M. Ziegler, Lectures on Polytopes , Grad. Texts in Math. 152 , Springer, New York, 1995. MR 1311028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.