×

Shift invariant binary aggregation operators. (English) Zbl 1081.68106

Summary: When applying an information fusion method, usually the output results are required to be a scalar value. In multiple situations, the application of the fusion method to input values shifted by a constant should result in an output that is shifted likewise. In this paper, we present a study of the shift invariance property of aggregation operators. The relationship between shift invariant binary aggregation operators and 1-Lipschitz aggregation operators is shown, and a full description of shift invariant aggregation operators is given.

MSC:

68T37 Reasoning under uncertainty in the context of artificial intelligence
03E72 Theory of fuzzy sets, etc.
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aczel, J.; Gronau, D.; Schwaiger, J., Increasing solutions of the homogeneity equation and similar equations, J. Math. Anal. Appl., 182, 436-464 (1994) · Zbl 0806.39009
[2] Calvo, T.; Kolesárová, A.; Komornı́ková, M.; Mesiar, R., Aggregation operators: basic concepts, issues and properties, (Calvo, T.; Mayor, G.; Mesiar, R., Aggregation Operators. New Trends and Applications (2002), Physica-Verlag: Physica-Verlag Heidelberg), 3-105 · Zbl 0983.00020
[3] T. Calvo, R. Mesiar, Stability of aggregation operators, Proc. Eusflat’2001, Leicester, 2001, pp. 475-478.; T. Calvo, R. Mesiar, Stability of aggregation operators, Proc. Eusflat’2001, Leicester, 2001, pp. 475-478.
[4] Denneberg, D., Non-additive Measure and Integral (1994), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0826.28002
[5] Fodor, J.; Calvo, T., Aggregation functions defined by t-norms and t-conorms, (Bouchon-Meunier, B., Aggregation and Fusion of Imperfect Information (1998), Physica-Verlag: Physica-Verlag Heidelberg), 36-48 · Zbl 0904.39016
[6] L. Godo, V. Torra, Extending Choquet integrals for aggregation of ordinal values, Proc. IPMU’2000, Madrid, 2000, pp. 410-417.; L. Godo, V. Torra, Extending Choquet integrals for aggregation of ordinal values, Proc. IPMU’2000, Madrid, 2000, pp. 410-417. · Zbl 1113.68516
[7] M. Grabisch, Symmetric and asymmetric integrals: the ordinal case, Proc. IIZUKA’2000, Iizuka, 2000, CD-Rom.; M. Grabisch, Symmetric and asymmetric integrals: the ordinal case, Proc. IIZUKA’2000, Iizuka, 2000, CD-Rom.
[8] M. Grabisch, T. Murofushi, M. Sugeno (Eds.), Fuzzy Measures and Integrals. Theory and Applications, Physica-Verlag, Heidelberg, 2000.; M. Grabisch, T. Murofushi, M. Sugeno (Eds.), Fuzzy Measures and Integrals. Theory and Applications, Physica-Verlag, Heidelberg, 2000. · Zbl 0935.00014
[9] Klir, G. J.; Folger, T. A., Fuzzy Sets, Uncertainty, and Information (1988), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0675.94025
[10] Kolesárová, A.; Komorníková, M., Triangular norm-based iterative compensatory operators, Fuzzy Sets and Systems, 104, 109-120 (1999) · Zbl 0931.68123
[11] A. Kolesárová, J. Mordelová, 1-Lipschitz and kernel aggregation operators, Proc. AGOP’2001, Oviedo, 2001, pp. 71-75.; A. Kolesárová, J. Mordelová, 1-Lipschitz and kernel aggregation operators, Proc. AGOP’2001, Oviedo, 2001, pp. 71-75.
[12] Marichal, J.-L.; Mathonet, P.; Tousset, E., Characterization of some aggregations functions stable for positive linear transformations, Fuzzy Sets and Systems, 102, 293-314 (1999) · Zbl 0952.91020
[13] Mas, M.; Mayor, G.; Torrens, J., t-operators, Internat. J. Uncertainty Fuzziness and Knowledge-Based Systems, 7, 31-50 (1999) · Zbl 1087.03515
[14] Mesiar, R.; Komornı́ková, M., Triangular norm-based aggregation of evidence under fuzziness, (Bouchon-Meunier, B., Aggregation and Fusion of Imperfect Information (1998), Physica-Verlag: Physica-Verlag Heidelberg), 11-35
[15] J. Mordelová, E. Muel, Kernel aggregation operators, Proc. AGOP’2001, Oviedo, 2001, pp. 95-97.; J. Mordelová, E. Muel, Kernel aggregation operators, Proc. AGOP’2001, Oviedo, 2001, pp. 95-97.
[16] Nagumo, M., Uber eine Klasse der Mittelwerte, Japanese J. Math., 6, 71-79 (1930)
[17] Nelsen, R. B., An Introduction to Copulas, Lecture Notes in Statistic, vol. 139 (1999), Springer: Springer Berlin · Zbl 0909.62052
[18] Pap, E., Null-Additive Set Functions (1995), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0856.28001
[19] Pradera, A.; Trillas, E.; Calvo, T., A general class of triangular norm-based aggregation operatorsquasi-linear T-S operators, Internat. J. Approx. Reason., 30, 57-72 (2002) · Zbl 1006.68160
[20] Schweizer, B.; Sklar, A., Probabilistic Metric Spaces (1983), North-Holland: North-Holland New York · Zbl 0546.60010
[21] Zadeh, L. A., Fuzzy sets, Inform. Control, 8, 338-353 (1965) · Zbl 0139.24606
[22] Zimmermann, H. J.; Zysno, P., Latent connectives in human decision making, Fuzzy Sets and Systems, 4, 37-51 (1980) · Zbl 0435.90009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.