×

zbMATH — the first resource for mathematics

A Maxwell-Bloch model with discrete symmetries for wave propagation in nonlinear crystals: an application to KDP. (English) Zbl 1081.81127
Summary: This article presents the derivation of a semi-classical model of electromagnetic-wave propagation in a non centro-symmetric crystal. It consists of Maxwell’s equations for the wave field coupled with a version of Bloch’s equations which takes fully into account the discrete symmetry group of the crystal. The model is specialized in the case of a KDP crystal for which information about the dipolar moments at the Bloch level can be recovered from the macroscopic dispersion properties of the material.

MSC:
81V80 Quantum optics
78A60 Lasers, masers, optical bistability, nonlinear optics
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] P.W. Atkins and R.S. Friedman, Molecular Quantum Mechanics. Oxford University Press (1996).
[2] H.J. Bakker, P.C.M. Planken, L. Kuipers and A. Lagendijk, Phase modulation in second-order nonlinear-optical processes. Phys. Rev. A42 (1990) 4085-4101.
[3] H.J. Bakker, P.C.M. Planken and H.G. Muller, Numerical calculation of optical frequency-conversion processes: a new approach. J. Opt. Soc. Am. B6 (1989) 1665-1672.
[4] B. Bidégaray, A. Bourgeade and D. Reignier, Introducing physical relaxation terms in Bloch equations. J. Comput. Phys.170 (2001) 603-613. · Zbl 1112.81022 · doi:10.1006/jcph.2001.6752
[5] B. Bidégaray, Time discretizations for Maxwell-Bloch equations. Numer. Methods Partial Differential Equations19 (2003) 284-300. · Zbl 1056.78014 · doi:10.1002/num.10046
[6] D.M. Bishop, Group theory and chemistry. Dover Press (1973). · Zbl 1093.20500
[7] A. Bourgeade and E. Freysz, Computational modeling of second-harmonic generation by solution of full-wave vector Maxwell equations. J. Opt. Soc. Am. B17 (2000) 226-234.
[8] R.W. Boyd, Nonlinear Optics. Academic Press (1992).
[9] M.M. Choy and R.L. Byer, Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals. Phys. Rev. B14 (1976) 1693-1706.
[10] T. Ditmire, A.M. Rubenchik, D. Eimerl and M.D. Perry, Effects of cubic nonlinearity on frequency doubling of high-power laser pulses. J. Opt. Soc. Am. B13 (1996) 649-655.
[11] R. Eckardt, H. Masuda, Y.X. Fan and R.L. Byer, Absolute and relative nonlinear optical coefficients of KDP, KDP*, BaB2O4, LiIO3>, MgO:LiNbO3 and KTP measured by phase-matched second-harmonic generation. IEEE J. of Quantum Electr.26 (1990) 922-933.
[12] D. Eimerl, Electro-optic, linear and nonlinear optical properties of KDP and its isomorphs. Ferroelectrics72 (1987) 95-139.
[13] J. Jerphagnon and S.K. Kurtz, Optical nonlinear susceptibilities: accurate relative values for quartz, ammonium dihydrogen phosphate, and potassium dihydrogen phosphate. Phys. Rev. B1 (1970) 1739-1744.
[14] N.C. Kothari and X. Carlotti, Transient second-harmonic generation: influence of effective group-velocity dispersion. J. Opt. Soc. Am. B5 (1988) 756-764.
[15] S.K. Kurtz, J. Jerphagnon and M.M. Choy, Nonlinear dielectric susceptibilities. Landolt-Boernstein new series3 (1979) 671-743.
[16] B.F. Levine, Bond-charge calculation of nonlinear optical susceptibilities for various crystal structures. Phys. Rev. B7 (1973) 2600-2626.
[17] R. Maleck Rassoul, A. Ivanov, E. Freysz, A. Ducasse and F. Hache, Second-harmonic generation under phase-velocity and group-velocity mismatch: influence of cascading self-phase and cross-phase modulation. Opt. Lett.22 (1997) 268-270.
[18] R.C. Miller, Optical harmonic generation in piezoelectric crystals. Appl. Phys. Lett.5 (1964) 17-19.
[19] O. Saut, Étude numérique des nonlinéarités d’un cristal par résolution des équations de Maxwell-Bloch, Ph.D. Thesis, INSA Toulouse (2003).
[20] O. Saut, Computational modeling of ultrashort powerful laser pulses in an anisotropic crystal. J. Comput. Phys. (2004) (to appear). · Zbl 1073.78503
[21] L.I. Schiff, Quantum Mechanics. Mc Graw-Hill International Editions (1995).
[22] J.P. Serre, Représentations linéaires des groupes finis. Hermann (1998). · Zbl 0926.20003
[23] I. Shoji, T. Kondo, A. Kitamoto, M. Shirane and R. Ito, Absolute scale of second-order nonlinear-optical coefficients. J. Opt. Soc. Am. B14 (1997) 2268-2294.
[24] J.P. Van Der Ziel and N. Bloembergen, Temperature dependence of optical harmonic generation in KH2PO4 ferroelectrics. Phys. Rev.135 (1964) 1662-1669.
[25] F. Zernicke, Refractive indices of ADP and KDP between 2000 Å and 1.5 \mu m. J. Opt. Soc. Am.54 (1964) 1215-1220.
[26] R.W. Ziolkowski, J.M. Arnold and D.M. Gogny, Ultrafast pulse interactions with two-level atoms. Phys. Rev. A52 (1995) 3082-3094.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.