×

zbMATH — the first resource for mathematics

On the complex WKB analysis for a second order linear O.D.E. with a many-segment characteristic polygon. (English) Zbl 1082.34081
This paper concerns the one-dimensional Schrödinger equation \[ \varepsilon^{2h}{d^2y\over dx^2}= Q(x,\varepsilon) y,\quad Q(x,\varepsilon):= \sum^h_{j=0} a_j\varepsilon^j x^{m_j}; \]
\[ m_j:= {(h- j+1)(h-j)\over 2},\quad 0\neq a_j\in\mathbb C\;\forall j, \]
\[ h= 2,3,4,\dots;\quad x,y\in\mathbb{C};\quad 0< \varepsilon\leq \varepsilon_0;\quad D: 0\leq|x|\leq x_0. \] The asymptotic behavior at the turning point \(x= 0\) is studied when the characteristic polygon has many segments.
MSC:
34M60 Singular perturbation problems for ordinary differential equations in the complex domain (complex WKB, turning points, steepest descent)
34E20 Singular perturbations, turning point theory, WKB methods for ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] E. Delabaere and T. D. Tai, Spectral analysis of complex cubic oscillator, Univ. Nice-Sophia Antipolis. Prépubl. 555 (1999). · Zbl 1044.81555
[2] M. A. Evgrafov and M. V. Fedoryuk, Asymptotic behavior as \(\lambda\to\infty\) of solutions of the equation \(w''(z)-p(z,\lambda)w(z)=0\) in the complex \(z\)-plane, Uspehi Mat. Nauk 21 , or Russian Math. Surveys 21 (1966), 1-48. · Zbl 0173.33801
[3] M. V. Fedoryuk, The topology of Stokes lines for equations of the second order, A.M.S. Transl. (2) 89 (1970), 89-102. or Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 645-656. · Zbl 0208.35303
[4] M. V. Fedoryuk, Asymptotic Analysis , Springer (1993). (English translation of \?\?\selectlanguagerussian Fedoryuk, M. V., Asimptoticheskie metody dlya lineĭnykh obyknovennykh differentsialnykh uravneniĭ. Nauka\selectlanguageenglish (1983).”)
[5] S. Fujiié and T. Ramond, Matrice de scattering et reśonances associées à une orbite hérocline. Ann. Inst. Henri poincaré 69 (1998), 31-81. · Zbl 0916.34071
[6] M. Hukuhara, Sur les points singulieres des équaions différentielles linéaires III, Mém. Fac. Sci. Kyushu. Univ. 2 (1941), 125-137. · Zbl 0061.19603
[7] M. Iwano and Y. Sibuya, Reduction of the order of a linear ordinary differential equation containing a small parameter. Kodai Math. Sem. Rep. 15 (1963), 1-28. · Zbl 0115.07001
[8] M. Nakano, On asymptotic solutions of a second order linear ordinary differential equation with a turning point I, II, Bull. of Hiyoshi. 14 (1972), 70-75; 15 (1973), 64-70.
[9] M. Nakano, Second order linear ordinary differential equations with turning points and singularities I, II, Kodai Math. Sem. Rep. 29 (1977), 88-102; Kodai Math. J. 1 (1978), 304-312. · Zbl 0409.34055
[10] M. Nakano, On a \(n\)-th order linear ordinary differential equation with a turning-singular point, Tokyo J. Math. 21 (1998), 201-215. · Zbl 0911.34053
[11] M. Nakano, On the complex WKB method for a secondary turning point problem, Tokyo J. Math. 24 (2001), 343-358. · Zbl 1004.34042
[12] M. Nakano, On the complex WKB analysis for a Schrödinger equation with a general three-segment characteristic polygon, Vietnam J. Math. 30 (2002), 605-625. · Zbl 1045.34062
[13] M. Nakano and T. Nishimoto, On a secondary turning point problem, Kodai Math. Sem. Rep. 22 (1970), 355-384. · Zbl 0208.11101
[14] T. Nishimoto, On matching method for a linear ordinary differential equation containing a parameter I, II, III, Kodai Math. Sem. Rep. 17 (1965), 307-328; 18 (1966), 61-86; 19 (1967), 80-94. · Zbl 0142.34501
[15] F. W. J. Olver, Asymptotics and special functions , Academic Press (1974). · Zbl 0303.41035
[16] R. B. Paris and A. D. Wood, Asymptotics of high order differential equations , Longman Scientific and Technical (1986). · Zbl 0644.34052
[17] H. G. Roos, Die asymptotische Lösung einer linearen Differentialgleichung zweiter Ordnung mit zweisegmentigem charakteristischen Polygon, Beitr. Anal. 7 (1975), 55-63. · Zbl 0271.34068
[18] H. G. Roos, Die asymptotische Lösung einer linearen Differentialgleichung mit dreisegmentigem charakteristischen Polygon, Math. Nachr. 88 (1979), 93-103. · Zbl 0429.34055
[19] K. Uchiyama, How to draw Stokes curves for 2nd order differential equations (Computer program revised by M. Nakano). · Zbl 1428.20045
[20] W. Wasow, Turning point problems for systems of linear differential equations, I. The formal theory, II. The analytic theory. Comm. Pure Appl. Math. 14 (1961), 657-673; 15 (1962), 173-187. · Zbl 0106.29301
[21] W. Wasow, Asymptotic expansions for ordinary differential equations , John Wiley (1965). · Zbl 0133.35301
[22] W. Wasow, Linear turning point theory , Springer (1985). · Zbl 0558.34049
[23] D. Zwillinger, Handbook of differential equations , Academic Press (1989). · Zbl 0678.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.