×

Extension of vector-valued integral polynomials. (English) Zbl 1082.46034

P. Kirwan and R. Ryan [Proc. Am. Math. Soc. 126, 1023–1029 (1998; Zbl 0890.46032)] were perhaps the first to discuss extendibility of polynomials on Banach spaces. An \(n\)-homogeneous polynomial \(P:E \to F\) between Banach spaces is said to be {extendible} if for any larger Banach space \(F \supset E,\) there is \(\widetilde{P} \in {\mathcal P}(^nF,X)\) that extends \(P.\) The space of extendible \(n\)-homogeneous polynomials is denoted \(\mathcal{P}_e(^nE,X).\)
The basic question studied here is whether \(\widetilde{P}\) has a particular property if \(P\) does, and the particular property in question is some kind of integral condition. For instance, Pietsch-integral polynomials are always extendible to polynomials that are Pietsch-integral on the larger space. On the other hand, although Grothendieck-integral polynomials are extendible, these extensions are not in general Grothendieck-integral. Also, provided that \(E\) does not contain a copy of \(\ell_1,\) the canonical extension \(\widetilde{P}\) of any (Grothendieck or Pietsch)-integral polynomial with representing measure \(G\) is given by \(\widetilde{P}(z) = \int_{B_E^\prime} z(\gamma)^n dG(\gamma).\) In fact, using results by the first author and I. Zalduendo [Proc. Am. Math. Soc. 127, 241–250 (1999; Zbl 0908.46031)], the authors obtain an integral representation for \(\widetilde{P}\) that involves the measures that represent \(P.\)

MSC:

46G25 (Spaces of) multilinear mappings, polynomials
46B28 Spaces of operators; tensor products; approximation properties
46G20 Infinite-dimensional holomorphy

References:

[1] Alencar, R., Multilinear mappings of nuclear and integral type, Proc. Amer. Math. Soc., 94, 33-38 (1985) · Zbl 0537.47011
[2] Alencar, R., On reflexivity and basis for \(P({}^mE)\), Proc. Roy. Irish Acad. Sect. A, 85, 131-138 (1985) · Zbl 0594.46043
[3] Arens, R., The adjoint of a bilinear operation, Proc. Amer. Math. Soc., 2, 839-848 (1951) · Zbl 0044.32601
[4] Aron, R.; Berner, P., A Hahn-Banach extension theorem for analytic mappings, Bull. Soc. Math. France, 106, 3-24 (1978) · Zbl 0378.46043
[5] Carando, D., Extendible polynomials on Banach spaces, J. Math. Anal. Appl., 233, 359-372 (1999) · Zbl 0942.46029
[6] Carando, D.; Dimant, V., Duality of spaces of nuclear and integral polynomials, J. Math. Anal. Appl., 241, 107-121 (2000) · Zbl 0993.46007
[7] Carando, D.; Lassalle, S., \(E^\prime\) and its relation with vector-valued functions on \(E\), Ark. Mat., 42, 283-300 (2004) · Zbl 1058.46024
[8] Carando, D.; Zalduendo, I., A Hahn-Banach theorem for integral polynomials, Proc. Amer. Math. Soc., 127, 241-250 (1999) · Zbl 0908.46031
[9] Castillo, J.; García, R.; Jaramillo, J. A., Extension of bilinear forms on Banach spaces, Proc. Amer. Math. Soc., 129, 3647-3656 (2001) · Zbl 0988.46010
[10] Cilia, R.; D’Anna, M.; Gutiérrez, J. M., Polynomial characterization of \(L_\infty \)-spaces, J. Math. Anal. Appl., 275, 900-912 (2002) · Zbl 1031.46051
[11] Cilia, R.; Gutiérrez, J. M., Nuclear and integral polynomials, J. Austral. Math. Soc., 76, 269-280 (2004) · Zbl 1073.46037
[12] Davie, A. M.; Gamelin, T. W., A theorem of polynomial-star approximation, Trans. Amer. Math. Soc., 106, 351-358 (1989) · Zbl 0683.46037
[13] Defant, A.; Floret, K., Tensor Norms and Operator Ideals, Math. Studies, vol. 176 (1993), North-Holland: North-Holland Amsterdam · Zbl 0774.46018
[14] Dineen, S., Complex Analysis in Locally Convex Spaces, Math. Studies, vol. 57 (1981), North-Holland: North-Holland Amsterdam · Zbl 0484.46044
[15] Diestel, J.; Uhl, J. J., Vector Measures, Math. Surveys Monogr., vol. 15 (1977), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0369.46039
[16] Floret, K., Natural norms on symmetric tensor products of normed spaces, Note Mat., 17, 153-188 (1997) · Zbl 0961.46013
[17] Galindo, P.; García, D.; Maestre, M.; Mujica, J., Extension of multilinear mappings on Banach spaces, Studia Math., 108, 55-76 (1994) · Zbl 0852.46004
[18] González, M.; Gutiérrez, J. M., Extension and lifting of polynomials, Arch. Math., 81, 431-438 (2003) · Zbl 1047.46035
[19] Haydon, R., Some more characterizations of Banach spaces containing \(\ell_1\), Math. Proc. Cambridge Philos. Soc., 80, 269-276 (1976) · Zbl 0335.46011
[20] Kirwan, P.; Ryan, R., Extendibility of homogeneous polynomials on Banach spaces, Proc. Amer. Math. Soc., 126, 1023-1029 (1998) · Zbl 0890.46032
[21] Mazet, P., A Hahn-Banach theorem for quadratic forms, Proc. Roy. Irish Acad. Sect. A, 100, 177-182 (2000) · Zbl 0995.46006
[22] Mujica, J., Complex Analysis in Banach Spaces, Math. Studies, vol. 120 (1986), North-Holland: North-Holland Amsterdam · Zbl 0586.46040
[23] R. Ryan, Applications of topological tensor products to infinite dimensional holomorphy, PhD thesis, University College, Dublin, 1980; R. Ryan, Applications of topological tensor products to infinite dimensional holomorphy, PhD thesis, University College, Dublin, 1980
[24] Ryan, R., Introduction to Tensor Products of Banach Spaces, Springer Monogr. Math. (2002), Springer-Verlag: Springer-Verlag London · Zbl 1090.46001
[25] Villanueva, I., Integral mappings between Banach spaces, J. Math. Anal. Appl., 279, 56-70 (2003) · Zbl 1030.47503
[26] Zalduendo, I., Extending Polynomials (1998), Publ. Dep. Análisis Mat.: Publ. Dep. Análisis Mat. Universidad Complutense de Madrid
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.