×

zbMATH — the first resource for mathematics

A class of evolutionary variational inequalities with applications in viscoelasticity. (English) Zbl 1082.49006

MSC:
49J40 Variational inequalities
47J20 Variational and other types of inequalities involving nonlinear operators (general)
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
74D10 Nonlinear constitutive equations for materials with memory
74M15 Contact in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
74S20 Finite difference methods applied to problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/0045-7825(91)90022-X · Zbl 0825.76353 · doi:10.1016/0045-7825(91)90022-X
[2] DOI: 10.1016/S0362-546X(98)00100-X · Zbl 0923.73054 · doi:10.1016/S0362-546X(98)00100-X
[3] Amassad A., Discr. Cont. Dyn. Syst. 4 pp 55–
[4] DOI: 10.1093/imamat/67.6.525 · Zbl 1026.74051 · doi:10.1093/imamat/67.6.525
[5] DOI: 10.1155/S1110757X02000219 · Zbl 1035.74040 · doi:10.1155/S1110757X02000219
[6] Barboteu M., J. Appl. Math. 11 pp 575–
[7] DOI: 10.5802/aif.280 · Zbl 0169.18602 · doi:10.5802/aif.280
[8] DOI: 10.1016/S0045-7825(02)00423-1 · Zbl 1042.74039 · doi:10.1016/S0045-7825(02)00423-1
[9] P. G. Ciarlet, Handbook of Numerical Analysis II, eds. P. G. Ciarlet and J. L. Lions (North Holland, 1991) pp. 17–352.
[10] DOI: 10.1002/mma.1670060113 · Zbl 0563.73024 · doi:10.1002/mma.1670060113
[11] Fernández-García J. R., Numer. Math. 90 pp 689–
[12] DOI: 10.1007/978-3-662-12613-4 · doi:10.1007/978-3-662-12613-4
[13] Han W., Comput. Mech. Adv. 2 pp 283–
[14] DOI: 10.1016/S0377-0427(00)00707-X · Zbl 0999.74087 · doi:10.1016/S0377-0427(00)00707-X
[15] DOI: 10.1137/S0036142998347309 · Zbl 0988.74048 · doi:10.1137/S0036142998347309
[16] DOI: 10.1016/S0045-7825(99)00420-X · Zbl 1004.74071 · doi:10.1016/S0045-7825(99)00420-X
[17] Han W., Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity (2002) · Zbl 1013.74001 · doi:10.1090/amsip/030
[18] DOI: 10.1007/978-1-4612-1048-1 · Zbl 0654.73019 · doi:10.1007/978-1-4612-1048-1
[19] Hoarau-Mantel T.-V., Int. J. Appl. Math. Comput. Sci. 12 pp 101–
[20] DOI: 10.1137/1.9781611970845 · doi:10.1137/1.9781611970845
[21] DOI: 10.1016/0020-7225(88)90032-8 · Zbl 0662.73079 · doi:10.1016/0020-7225(88)90032-8
[22] DOI: 10.1007/978-3-0348-7303-1_8 · doi:10.1007/978-3-0348-7303-1_8
[23] Le Tallec P., Numerical Analysis of Viscoelastic Problems (1990) · Zbl 0718.73091
[24] DOI: 10.1016/0362-546X(87)90055-1 · doi:10.1016/0362-546X(87)90055-1
[25] Nečas J., Mathematical Theory of Elastic and Elastoplastic Bodies: An Introduction (1981)
[26] DOI: 10.1016/S0045-7825(98)00388-0 · Zbl 0991.74047 · doi:10.1016/S0045-7825(98)00388-0
[27] DOI: 10.1023/A:1007413119583 · Zbl 0921.73231 · doi:10.1023/A:1007413119583
[28] DOI: 10.1007/b99799 · Zbl 1069.74001 · doi:10.1007/b99799
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.