Shankar, K.; Spatzier, R.; Wilking, B. Spherical rank rigidity and Blaschke manifolds. (English) Zbl 1082.53051 Duke Math. J. 128, No. 1, 65-81 (2005). In this paper the authors give a characterization of locally compact rank one symmetric spaces, which can be seen as an analogue of Ballmann’s and Burns and Spatzier’s characterizations of nonpositively curved symmetric spaces of higher rank, as well as of Hamenstädt’s characterization of negatively curved symmetric spaces. Namely, the authors show that a complete Riemannian manifold \(M\) is locally isometric to a compact, rank one symmetric space if \(M\) has sectional curvature at most 1 and each normal geodesic in \(M\) has a conjugate point at \(\pi\). Reviewer: Antonio Masiello (Bari) Cited in 1 ReviewCited in 7 Documents MSC: 53C35 Differential geometry of symmetric spaces 53C20 Global Riemannian geometry, including pinching Keywords:Riemannian manifolds; symmetric spaces; geodesics; conjugate points PDF BibTeX XML Cite \textit{K. Shankar} et al., Duke Math. J. 128, No. 1, 65--81 (2005; Zbl 1082.53051) Full Text: DOI arXiv OpenURL References: [1] U. Abresch and W. T. Meyer, “Injectivity radius estimates and sphere theorems” in Comparison Geometry (Berkeley, 1993/94) , Math. Sci. Res. Inst. Publ. 30 , Cambridge Univ. Press, Cambridge, 1997, 1–47. · Zbl 0888.53001 [2] W. Ballmann, Nonpositively curved manifolds of higher rank , Ann. of Math. (2) 122 (1985), 597–609. JSTOR: · Zbl 0585.53031 [3] W. Ballmann, M. Brin, and P. Eberlein, Structure of manifolds of nonpositive curvature, I , Ann. of Math. (2) 122 (1985), 171–203. JSTOR: · Zbl 0589.53047 [4] W. Ballmann, M. Brin, and R. Spatzier, Structure of manifolds of nonpositive curvature, II , Ann. of Math. (2) 122 (1985), 205–235. JSTOR: · Zbl 0598.53046 [5] W. Ballmann, G. Thorbergsson, and W. Ziller, Closed geodesics on positively curved manifolds , Ann. of Math. (2) 116 (1982), 213–247. JSTOR: · Zbl 0495.58010 [6] M. Berger, Sur certaines variétés à géodesiques toutes fermées , Bol. Soc. Brasil. Mat. 9 (1978), 89–96. · Zbl 0414.53035 [7] A. L. Besse, Manifolds All of Whose Geodesics are Closed , Ergeb. Math. Grenzgeb. 93 , Springer, Berlin, 1978. · Zbl 0387.53010 [8] K. Burns and R. Spatzier, Manifolds of nonpositive curvature and their buildings , Inst. Hautes Études Sci. Publ. Math. 65 (1987), 35–59. · Zbl 0643.53037 [9] I. Chavel, Riemannian Geometry—A Modern Introduction , Cambridge Tracts in Math. 108 , Cambridge Univ. Press, Cambridge, 1993. · Zbl 0810.53001 [10] J. Cheeger and D. G. Ebin, Comparison Theorems in Riemannian Geometry , North-Holland Math. Library 9 , North-Holland, Amsterdam, 1975. · Zbl 0309.53035 [11] M. P. do Carmo, Riemannian Geometry , Math. Theory Appl., Birkhäuser, Boston, 1992. [12] D. Gromoll and W. Meyer, On differentiable functions with isolated critical points , Topology 8 (1969), 361–369. · Zbl 0212.28903 [13] U. Hamenstädt, A geometric characterization of negatively curved, locally symmetric spaces , J. Differential Geom. 32 (1991), 193–221. · Zbl 0733.53018 [14] E. Heintze, personal communication, 1990. [15] W. Klingenberg, Über Riemannsche Mannigfaltigkeiten mit positiver Krümmung , Comment. Math. Helv. 35 (1961), 47–54. · Zbl 0133.15005 [16] V. Y. Rovenskii and V. A. Toponogov, “Great sphere foliations and manifolds with curvature bounded above,” Appendix A.2 in Foliations on Riemannian Manifolds and Submanifolds , by V. Y. Rovenskii, Birkhäuser, Boston, 1998, 223–234. [17] R. J. Spatzier and M. Strake, Some examples of higher rank manifolds of nonnegative curvature , Comment. Math. Helv. 65 (1990), 299–317. · Zbl 0713.53029 [18] V. A. Toponogov, Extremal theorems for Riemannian spaces with curvature bounded from above, I (in Russian), Sibirsk. Mat. Ž. 15 (1974), 1348–1371., 1431–1432. · Zbl 0305.53043 [19] B. Wilking, Index parity of closed geodesics and rigidity of Hopf fibrations , Invent. Math. 144 (2001), 281–295. · Zbl 1028.53044 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.