zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The decomposition method for stiff systems of ordinary differential equations. (English) Zbl 1082.65561
Summary: The decomposition method is applied to initial value problems for systems of ordinary differential equations in both linear and nonlinear cases, focusing our interest in stiff problems.

MSC:
65L60Finite elements, Rayleigh-Ritz, Galerkin and collocation methods for ODE
65L05Initial value problems for ODE (numerical methods)
34A30Linear ODE and systems, general
34A34Nonlinear ODE and systems, general
WorldCat.org
Full Text: DOI
References:
[1] Adomian, G.: Stochastic systems. (1983) · Zbl 0523.60056
[2] Adomian, G.: Nonlinear stochastic operator equations. (1986) · Zbl 0609.60072
[3] Adomian, G.: Nonlinear stochastic systems theory and applications to physics. (1989) · Zbl 0659.93003
[4] Adomian, G.: Solving frontier problems of physics: the decomposition method. (1994) · Zbl 0802.65122
[5] Bellomo, N.; Monaco, R. A.: Comparison between Adomian’s decomposition methods and perturbation techniques for nonlinear random differential equations. J. math. Anal. appl. 110, 495-502 (1985) · Zbl 0575.60064
[6] J.T. Edwards, J.A. Roberts, N.J. Ford, A comparison of Adomian’s decomposition method and Runge Kutta methods for approximate solution of some predator prey model equations, Numerical Analysis Report No. 309, The University of Manchester-UMIST, October 1997.
[7] Olek, S.: An accurate solution to the multispecies Lotka-Volterra equations. SIAM rev. 36, No. 3, 480-488 (1994) · Zbl 0802.92018
[8] Rach, R.: On the Adomian (decomposition) method and comparisons with Picard’s method. J. math. Anal. appl. 128, 480-483 (1987) · Zbl 0645.60067
[9] Shawgfeh, N. T.; Adomian, G.: Non-perturbative analytical solution of the general Lotka-Volterra three-species system. Appl. math. Comput. 76, 251-266 (1996) · Zbl 0846.65034
[10] Wazwaz, A. M.: A comparison between Adomian decomposition method and Taylor series method in the series solutions. Appl. math. Comput. 97, 37-44 (1998) · Zbl 0943.65084
[11] Abbaoui, K.; Cherruault, Y.: Convergence of Adomian’s method applied to differential equations. Math. comput. Modell. 28, No. 5, 103-109 (1994) · Zbl 0809.65073
[12] Abbaoui, K.; Cherruault, Y.: New ideas for proving convergence of decomposition methods. Comput. math. Appl. 29, No. 7, 103-108 (1995) · Zbl 0832.47051
[13] Abbaoui, K.; Cherruault, Y.: Convergence of Adomian’s method applied to nonlinear equations. Math. comput. Modell. 20, No. 9, 69-73 (1994) · Zbl 0822.65027
[14] Cherruault, Y.; Adomian, G.: Decomposition methods: a new proof of convergence. Math. comput. Modell. 18, No. 12, 103-106 (1993) · Zbl 0805.65057
[15] Guellal, S.; Cherruault, Y.: Practical formula for calculation of Adomian’s polynomials and application to the convergence of the decomposition method. Int. J. Bio-medical comput. 36, 223-228 (1994)
[16] Wu, X. -Y.; Xia, J. -L.: Two low accuracy methods for stiff systems. Appl. math. Comput. 123, 141-153 (2001) · Zbl 1024.65053
[17] A.C. Hindmarsh, G.D. Byrne, Applications of EPISODE: an experimental package for the integration of systems of ordinary differential equations, 1976.
[18] Hairer, E.; Wanner, G.: Solving ordinary differential equations II. (1991) · Zbl 0729.65051