zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The tanh and the sine-cosine methods for compact and noncompact solutions of the nonlinear Klein-Gordon equation. (English) Zbl 1082.65584
Summary: The nonlinear Klein-Gordon equation is used as a vehicle to employ the tanh method and the sine-cosine method to formally derive a number of travelling wave solutions. The study features a variety of solutions with distinct physical structures. The work shows that one method complements the other, and each method gives solutions of formal properties. The obtained solutions include compactons, solitons, solitary patterns, and periodic solutions.

MSC:
65M70Spectral, collocation and related methods (IVP of PDE)
35Q53KdV-like (Korteweg-de Vries) equations
35Q51Soliton-like equations
37K40Soliton theory, asymptotic behavior of solutions
Software:
MACSYMA
WorldCat.org
Full Text: DOI
References:
[1] Duncan, D. B.: Symplectic finite difference approximations of the nonlinear Klein-Gordon equation. SIAM J. Numer. anal. 34, No. 5, 1742-1760 (1997) · Zbl 0889.65093
[2] Perring, J. K.; Skyrme, T. H.: A model unified field equation. Nucl. phys. 31, 550-555 (1962) · Zbl 0106.20105
[3] Ablowitz, M. J.; Herbst, B. M.; Schober, C.: On the numerical solution of the sine-Gordon equation. J. comput. Phys. 126, 299-314 (1996) · Zbl 0866.65064
[4] Zabusky, N. J.; Kruskal, M. D.: Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. rev. Lett. 15, 240-243 (1965) · Zbl 1201.35174
[5] Wadati, M.: Introduction to solitons. Pramana: J. Phys. 57, No. 5-6, 841-847 (2001)
[6] Wadati, M.: The exact solution of the modified kortweg-de Vries equation. J. phys. Soc. jpn. 32, 1681-1687 (1972)
[7] Fordy, A. P.: Soliton theory: A survey of results. (1990) · Zbl 0747.35025
[8] Newell, A. C.: Solitons in mathematics and physics. (1985) · Zbl 0565.35003
[9] Novikov, S. P.; Manakov, S. V.; Pitaevskii, L. P.; Zakharov, V. E.: Theory of solitons. (1984) · Zbl 0598.35002
[10] Kivshar, Y. S.; Pelinovsky, D. E.: Self-focusing and transverse instabilities of solitary waves. Phys. rep. 331, 117-195 (2000)
[11] Kadomtsev, B. B.; Petviashvili, V. I.: Sov. phys. JETP. 39, 285-295 (1974)
[12] Hereman, W.; Takaoka, M.: Solitary wave solutions of nonlinear evolution and wave equations using a direct method and MACSYMA. J. phys. A 23, 4805-4822 (1990) · Zbl 0719.35085
[13] Rosenau, P.; Hyman, J. M.: Compactons: solitons with finite wavelengths. Phys. rev. Lett. 70, No. 5, 564-567 (1993) · Zbl 0952.35502
[14] Dusuel, S.; Michaux, P.; Remoissenet, M.: From kinks to compactonlike kinks. Phys. rev. E 57, No. 2, 2320-2326 (1998)
[15] Ludu, A.; Draayer, J. P.: Patterns on liquid surfaces: cnoidal waves, compactons and scaling. Physica D 123, 82-91 (1998) · Zbl 0952.76008
[16] Malfliet, W.: Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60, No. 7, 650-654 (1992) · Zbl 1219.35246
[17] Malfliet, W.: The tanh method: I. Exact solutions of nonlinear evolution and wave equations. Phys. scr. 54, 563-568 (1996) · Zbl 0942.35034
[18] Malfliet, W.: The tanh method: II. Perturbation technique for conservative systems. Phys. scr. 54, 569-575 (1996) · Zbl 0942.35035
[19] Wazwaz, A. M.: The tanh method for travelling wave solutions of nonlinear equations. Appl. math. Comput. 154, No. 3, 713-723 (2004) · Zbl 1054.65106
[20] Wazwaz, A. M.: Partial differential equations: methods and applications. (2002) · Zbl 1079.35001
[21] Wazwaz, A. M.: New solitary-wave special solutions with compact support for the nonlinear dispersive $K(m,n)$ equations. Chaos, solitons fractals 13, No. 2, 321-330 (2002) · Zbl 1028.35131
[22] Wazwaz, A. M.: Exact specific solutions with solitary patterns for the nonlinear dispersive $K(m,n)$ equations. Chaos, solitons fractals 13, No. 1, 161-170 (2001) · Zbl 1027.35115
[23] Wazwaz, A. M.: General compactons solutions for the focusing branch of the nonlinear dispersive $K(n,n)$ equations in higher dimensional spaces. Appl. math. Comput. 133, No. 2/3, 213-227 (2002) · Zbl 1027.35117
[24] Wazwaz, A. M.: General solutions with solitary patterns for the defocusing branch of the nonlinear dispersive $K(n,n)$ equations in higher dimensional spaces. Appl. math. Comput. 133, No. 2/3, 229-244 (2002) · Zbl 1027.35118
[25] Wazwaz, A. M.: Compactons dispersive structures for variants of the $K(n,n)$ and the KP equations. Chaos, solitons fractals 13, No. 5, 1053-1062 (2002) · Zbl 0997.35083
[26] Wazwaz, A. M.: Compactons and solitary patterns structures for variants of the KdV and the KP equations. Appl. math. Comput. 139, No. 1, 37-54 (2003) · Zbl 1029.35200
[27] Wazwaz, A. M.: A study on nonlinear dispersive partial differential equations of compact and noncompact solutions. Appl. math. Comput. 135, No. 2-3, 399-409 (2003) · Zbl 1027.35120
[28] Wazwaz, A. M.: A construction of compact and noncompact solutions of nonlinear dispersive equations of even order. Appl. math. Comput. 135, No. 2-3, 324-411 (2003) · Zbl 1027.35121
[29] Wazwaz, A. M.: Compactons in a class of nonlinear dispersive equations. Math. comput. Modell. 37, No. 3/4, 333-341 (2003) · Zbl 1044.35078
[30] Wazwaz, A. M.: Distinct variants of the KdV equation with compact and noncompact structures. Appl. math. Comput. 150, 365-377 (2004) · Zbl 1039.35110
[31] Wazwaz, A. M.: Variants of the generalized KdV equation with compact and noncompact structures. Comput. math. Appl. 47, 583-591 (2004) · Zbl 1062.35120
[32] Wazwaz, A. M.: New compactons, solitons and periodic solutions for nonlinear variants of the KdV and the KP equations. Chaos, solitons fractals 22, 249-260 (2004) · Zbl 1062.35121