Foryś, Wit Asymptotic behaviour of bi-infinite words. (English) Zbl 1082.68050 Theor. Inform. Appl. 38, No. 1, 27-48 (2004). Summary: We present a description of asymptotic behaviour of languages of bi-infinite words obtained by iterating morphisms defined on free monoids. MSC: 68Q45 Formal languages and automata Keywords:bi-infinite words PDF BibTeX XML Cite \textit{W. Foryś}, Theor. Inform. Appl. 38, No. 1, 27--48 (2004; Zbl 1082.68050) Full Text: DOI Numdam Numdam EuDML OpenURL References: [1] A. Ehrenfeucht and G. Rozenberg , Simplifications of homomorphism . Inform. Control 38 ( 1978 ) 298 - 309 . Zbl 0387.68062 · Zbl 0387.68062 [2] W. Foryś and T. Head , The poset of retracts of a free monoid . Int. J. Comput. Math. 37 ( 1990 ) 45 - 48 . Zbl 0723.68060 · Zbl 0723.68060 [3] T. Harju and M. Linna , On the periodicity of morphism on free monoid . RAIRO: Theoret. Informatics Appl. 20 ( 1986 ) 47 - 54 . Numdam | Zbl 0608.68065 · Zbl 0608.68065 [4] T. Head , Expanded subalphabets in the theories of languages and semigroups . Int. J. Comput. Math. 12 ( 1982 ) 113 - 123 . Zbl 0496.68050 · Zbl 0496.68050 [5] T. Head and V. Lando , Fixed and stationary \( \omega \)-wors and \( \omega \)-languages . The book of L, Springer-Verlag, Berlin ( 1986 ) 147 - 155 . Zbl 0586.68063 · Zbl 0586.68063 [6] M. Lothaire , Combinatorics on words . Addison-Wesley ( 1983 ). MR 675953 | Zbl 0514.20045 · Zbl 0514.20045 [7] J. Matyja , Sets of primitive words given by fixed points of mappings . Int. J. Comput. Math. (to appear). MR 1833764 | Zbl 0992.68162 · Zbl 0992.68162 [8] P. Narbel , Limits and boundaries of words and tiling substitutions . LITP, TH93. 12 ( 1993 ). [9] P. Narbel , The boundary of iterated morphisms on free semi-groups . Int. J. Algebra Comput. 6 ( 1996 ) 229 - 260 . Zbl 0852.68074 · Zbl 0852.68074 [10] J. Shallit and M. Wang , On two-sided infinite fixed points of morphisms . Lect. Notes Comput. Sci. 1684 ( 1999 ) 488 - 499 . Zbl 0945.68115 · Zbl 0945.68115 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.