Noether’s problem for some meta-abelian groups of small degree. (English) Zbl 1083.12002

Let \(K= \mathbb{Q}(x_0,\dots, x_{n-1})\) be the field of rational functions in \(n\) variables and \(G\) a transitive subgroup of \(S_n\). Then \(G\) acts on \(K\) by permuting the variables \(x_0,\dots, x_{n-1}\). Emmy Noether asked whether the fixed field \(K^G\) is a purely transcendental extension of \(\mathbb{Q}\). If the question has an affirmative answer then \(G\) can be realized as a Galois group over \(\mathbb{Q}\) and there even exists a \(G\)-generic polynomial over \(\mathbb{Q}\). For some groups \(G\) the answer is affirmative, for other groups \(G\) the answer is negative, but so far the results here are of fragmentary.
The main result of this paper enlarges the list of groups for which it is known that Noether’s problem has an affirmative answer: Let \(\text{Aff}(\mathbb{Z}/n\mathbb{Z})\) be the group of affine one-dimensional transformations on \(\mathbb{Z}/n\mathbb{Z}\) (i.e. \(\text{Aff}(\mathbb{Z}/n\mathbb{Z})\rtimes(\mathbb{Z}/n\mathbb{Z})\times(\mathbb{Z}/n\mathbb{Z})^*)\). Then Noether’s problem has an affirmative answer for every subgroup \(G\) of \(\text{Aff}(\mathbb{Z}/n\mathbb{Z})\) containing \(\mathbb{Z}/n\mathbb{Z}\) for \(n= 9,10,12,14,15\).


12F12 Inverse Galois theory
11R32 Galois theory
12F10 Separable extensions, Galois theory
Full Text: DOI


[1] H. Chu, S.-J. Hu and M. Kang, Noether’s problem for dihedral 2-groups, Comment. Math. Helv. 79 (2004), no. 1, 147-159. · Zbl 1069.12003 · doi:10.1007/s00014-003-0783-8
[2] S. Endô and T. Miyata, Invariants of finite abelian groups, J. Math. Soc. Japan 25 (1973), 7-26. · Zbl 0245.20007 · doi:10.2969/jmsj/02510007
[3] K. Hashimoto and A. Hoshi, Families of cyclic polynomials obtained from geometric generalization of Gaussian period relations, Math. Comp. (To appear). · Zbl 1082.11069 · doi:10.1090/S0025-5718-05-01750-3
[4] K. Hashimoto and A. Hoshi, Geometric generalization of Gaussian period relations with application to Noether’s problem for meta-cyclic groups, Tokyo J. Math. (To appear). · Zbl 1081.12002 · doi:10.3836/tjm/1244208276
[5] K. Hashimoto, A. Hoshi and Y. Rikuna, Noether’s problem and \(\mathbf{Q}\)-generic polynomials for the normalizer of the 8-cycle in \(S_8\), (2004). (Preprint). · Zbl 1183.11069
[6] A. Hoshi, Noether’s problem for Frobenius groups of degree \(7\) and \(11\), (2004). (Preprint).
[7] C. U. Jensen, A. Ledet and N. Yui, Generic polynomials , Cambridge Univ. Press, Cambridge, 2002. · Zbl 1042.12001
[8] K. Masuda, On a problem of Chevalley, Nagoya Math. J. 8 (1955), 59-63. · Zbl 0065.02601
[9] K. Masuda, Application of the theory of the group of classes of projective modules to the existance problem of independent parameters of invariant, J. Math. Soc. Japan 20 (1968), 223-232. · Zbl 0159.33803 · doi:10.2969/jmsj/02010223
[10] T. Miyata, Invariants of certain groups. I, Nagoya Math. J. 41 (1971), 69-73. · Zbl 0211.06801
[11] E. Noether, Rationale Funktionenkörper, Jahrbericht Deutsch. Math.-Verein. 22 (1913), 316-319.
[12] E. Noether, Gleichungen mit vorgeschriebener Gruppe, Math. Ann. 78 (1918), 221-229. · doi:10.1007/BF01457099
[13] A. D. Thomas and G. V. Wood, Group tables , Shiva mathematics series, 2, Shiva, Nantwich, 1980.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.