Neeman, Amnon; Ranicki, Andrew Noncommutative localisation in algebraic \(K\)-theory. I. (English) Zbl 1083.18007 Geom. Topol. 8, 1385-1425 (2004). The authors prove the existence of a long exact localization sequence in algebraic \(K\)-theory for a very general type of localization. Let \(A\) be an associative ring with unit, and let \(\sigma\) be any set of maps \(s_i: P_i \rightarrow Q_i\) of finitely generated projective (left) \(A\)-modules. A ring homomorphism \(A \rightarrow B\) is \(\sigma\)-inverting if for all \(i\) the map \(B\otimes_A P_i \rightarrow B \otimes_A Q_i\) is an isomorphism. The category of all \(\sigma\)-inverting homomorphisms \(A \rightarrow B\) has an initial object \(A \rightarrow \sigma^{-1}A\), which is the Cohn localization of \(A\).Under the assumption that \(\text{Tor}_n^A(\sigma^{-1}A,\sigma^{-1}A) = 0\) for all \(n>0\) the localization sequence is obtained from a description of the homotopy fiber of the map of spectra \(K(A) \rightarrow K(\sigma^{-1}A)\) as \(K(\mathcal R)\), where \(\mathcal R\) is a certain subcategory of the Waldhausen category of all perfect complexes of \(A\)-modules, i.e., bounded complexes of finitely generated projective \(A\)-modules. Reviewer: Manfred Kolster (Hamilton/Ontario) Cited in 4 ReviewsCited in 36 Documents MSC: 18F25 Algebraic \(K\)-theory and \(L\)-theory (category-theoretic aspects) 19D10 Algebraic \(K\)-theory of spaces 55P60 Localization and completion in homotopy theory 18E30 Derived categories, triangulated categories (MSC2010) 18E35 Localization of categories, calculus of fractions Keywords:noncommuative localisation; algebraic \(K\)-theory; triangulated category × Cite Format Result Cite Review PDF Full Text: DOI arXiv EuDML EMIS References: [1] H Bass, Algebraic \(K\)-theory, W. A. Benjamin, New York-Amsterdam (1968) · Zbl 0174.30302 [2] A A Beĭlinson, J Bernstein, P Deligne, Faisceaux pervers, Astérisque 100, Soc. Math. France (1982) 5 · Zbl 0536.14011 [3] G M Bergman, W Dicks, Universal derivations and universal ring constructions, Pacific J. Math. 79 (1978) 293 · Zbl 0359.16001 · doi:10.2140/pjm.1978.79.293 [4] M Bökstedt, A Neeman, Homotopy limits in triangulated categories, Compositio Math. 86 (1993) 209 · Zbl 0802.18008 [5] A K Bousfield, The localization of spaces with respect to homology, Topology 14 (1975) 133 · Zbl 0309.55013 · doi:10.1016/0040-9383(75)90023-3 [6] A K Bousfield, The localization of spectra with respect to homology, Topology 18 (1979) 257 · Zbl 0417.55007 · doi:10.1016/0040-9383(79)90018-1 [7] P M Cohn, Free rings and their relations, London Mathematical Society Monographs 2, Academic Press (1971) · Zbl 0232.16003 [8] W Dicks, Mayer-Vietoris persentations over colimits of rings, Proc. London Math. Soc. \((3)\) 34 (1977) 557 · Zbl 0356.16009 · doi:10.1112/plms/s3-34.3.557 [9] M Farber, A Ranicki, The Morse-Novikov theory of circle-valued functions and noncommutative localization, Tr. Mat. Inst. Steklova 225 (1999) 381 · Zbl 0983.58007 [10] M Farber, P Vogel, The Cohn localization of the free group ring, Math. Proc. Cambridge Philos. Soc. 111 (1992) 433 · Zbl 0767.16006 · doi:10.1017/S0305004100075538 [11] W Geigle, H Lenzing, Perpendicular categories with applications to representations and sheaves, J. Algebra 144 (1991) 273 · Zbl 0748.18007 · doi:10.1016/0021-8693(91)90107-J [12] H Gillet, Riemann-Roch theorems for higher algebraic \(K\)-theory, Adv. in Math. 40 (1981) 203 · Zbl 0478.14010 · doi:10.1016/S0001-8708(81)80006-0 [13] D Grayson, Higher algebraic \(K\)-theory II (after Daniel Quillen), Springer (1976) [14] D R Grayson, \(K\)-theory and localization of noncommutative rings, J. Pure Appl. Algebra 18 (1980) 125 · Zbl 0441.16020 · doi:10.1016/0022-4049(80)90123-1 [15] D R Grayson, Exact sequences in algebraic \(K\)-theory, Illinois J. Math. 31 (1987) 598 · Zbl 0629.18010 [16] B Keller, Deriving DG categories, Ann. Sci. École Norm. Sup. \((4)\) 27 (1994) 63 · Zbl 0799.18007 [17] B Keller, A remark on the generalized smashing conjecture, Manuscripta Math. 84 (1994) 193 · Zbl 0826.18004 · doi:10.1007/BF02567453 [18] H Krause, Smashing subcategories and the telescope conjecture-an algebraic approach, Invent. Math. 139 (2000) 99 · Zbl 0937.18013 · doi:10.1007/s002229900022 [19] H Krause, Cohomological quotients and smashing localizations, Amer. J. Math. 127 (2005) 1191 · Zbl 1090.18007 · doi:10.1353/ajm.2005.0041 [20] M Levine, Localization on singular varieties, Invent. Math. 91 (1988) 423 · Zbl 0646.14010 · doi:10.1007/BF01388780 [21] A Neeman, The chromatic tower for \(D(R)\), Topology 31 (1992) 519 · Zbl 0793.18008 · doi:10.1016/0040-9383(92)90047-L [22] A Neeman, The connection between the \(K\)-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel, Ann. Sci. École Norm. Sup. \((4)\) 25 (1992) 547 · Zbl 0868.19001 [23] A Neeman, Triangulated categories, Annals of Mathematics Studies 148, Princeton University Press (2001) · Zbl 0974.18008 [24] A Neeman, Non-compactly generated categories, Topology 37 (1998) 981 · Zbl 0939.18009 · doi:10.1016/S0040-9383(97)00069-4 [25] A Neeman, A Ranicki, Noncommutative localization and chain complexes I: Algebraic \(K\)- and \(L\)-theory [26] A Neeman, A Ranicki, Noncommutative localisation in algebraic \(K\)-theory II · Zbl 1083.18007 · doi:10.2140/gt.2004.8.1385 [27] A Neeman, A Ranicki, Noncommutative localisation in algebraic \(K\)-theory · Zbl 1083.18007 · doi:10.2140/gt.2004.8.1385 [28] A Neeman, A Ranicki, A Schofield, Representations of algebras as universal localizations, Math. Proc. Cambridge Philos. Soc. 136 (2004) 105 · Zbl 1088.16020 · doi:10.1017/S030500410300700X [29] D Quillen, Higher algebraic \(K\)-theory I, Springer (1973) · Zbl 0292.18004 [30] A Ranicki, High-dimensional knot theory, Springer Monographs in Mathematics, Springer (1998) · Zbl 0910.57001 [31] A Ranicki, Noncommutative localization in topology, London Math. Soc. Lecture Note Ser. 330, Cambridge Univ. Press (2006) 81 · Zbl 1125.55004 [32] J Rickard, Morita theory for derived categories, J. London Math. Soc. \((2)\) 39 (1989) 436 · Zbl 0642.16034 · doi:10.1112/jlms/s2-39.3.436 [33] A H Schofield, Representation of rings over skew fields, London Mathematical Society Lecture Note Series 92, Cambridge University Press (1985) · Zbl 0571.16001 [34] N Spaltenstein, Resolutions of unbounded complexes, Compositio Math. 65 (1988) 121 · Zbl 0636.18006 [35] R W Thomason, T Trobaugh, Higher algebraic \(K\)-theory of schemes and of derived categories, Progr. Math. 88, Birkhäuser (1990) 247 · Zbl 0731.14001 [36] P Vogel, Localization in algebraic \(L\)-theory, Lecture Notes in Math. 788, Springer (1980) 482 · Zbl 0429.18016 [37] P Vogel, On the obstruction group in homology surgery, Inst. Hautes Études Sci. Publ. Math. (1982) 165 · Zbl 0491.57015 · doi:10.1007/BF02698696 [38] F Waldhausen, Algebraic \(K\)-theory of spaces, Lecture Notes in Math. 1126, Springer (1985) 318 · Zbl 0579.18006 [39] C A Weibel, Negative \(K\)-theory of varieties with isolated singularities (1984) 331 · Zbl 0551.14002 · doi:10.1016/0022-4049(84)90045-8 [40] C A Weibel, A Brown-Gersten spectral sequence for the \(K\)-theory of varieties with isolated singularities, Adv. in Math. 73 (1989) 192 · Zbl 0696.18005 · doi:10.1016/0001-8708(89)90068-6 [41] C Weibel, D Yao, Localization for the \(K\)-theory of noncommutative rings, Contemp. Math. 126, Amer. Math. Soc. (1992) 219 · Zbl 0780.19007 [42] D Yao, Higher algebraic \(K\)-theory of admissible abelian categories and localization theorems, J. Pure Appl. Algebra 77 (1992) 263 · Zbl 0746.19006 · doi:10.1016/0022-4049(92)90142-3 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.