×

On the existence of mild solutions of semilinear evolution differential inclusions. (English) Zbl 1083.34046

J. Math. Anal. Appl. 308, No. 2, 620-635 (2005); corrigendum and addendum, ibid. 438, No. 1, 514-517 (2016).
This paper deals with the existence of local and global mild solutions for the following semilinear evolution differential inclusion \[ x'(t)\in A(t)x(t)+F(t,x(t))\quad \text{a.e. } t\in [0,d],\quad x(0)=x_{0}\in E, \] where \(\{A(t)\}, \;t\in [0,d]\), is a family of linear operators in a Banach space \(E\) generating an evolution operator and \(F\) is a Carathéodory multifunction.

MSC:

34G25 Evolution inclusions
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ambrosetti, A., Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Univ. Padova, 39, 349-360 (1967) · Zbl 0174.46001
[2] Castaing, C.; Valadier, M., Convex Analysis and Measurable Multifunctions, Lecture Notes in Math., vol. 580 (1977), Springer-Verlag: Springer-Verlag Berlin · Zbl 0346.46038
[3] Engel, K.-J.; Nagel, R., One-Parameter Semigroups for Linear Evolution Equations (2000), Springer-Verlag: Springer-Verlag New York · Zbl 0952.47036
[4] Hille, E., Functional Analysis and Semigroups, Amer. Math. Soc. Colloq. Publ., vol. 31 (1948), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI
[5] Hu, S.; Papageorgiou, N. S., Handbook of Multivalued Analysis, vol. I: Theory (1997), Kluwer Academic: Kluwer Academic Dordrecht · Zbl 0887.47001
[6] Kamenskii, M.; Obukhovskii, V.; Zecca, P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter Ser. Nonlinear Anal. Appl., vol. 7 (2001), de Gruyter: de Gruyter Berlin · Zbl 0988.34001
[7] Kato, T., Integration of the equation of evolution in a Banach space, J. Math. Soc. Japan, 5, 208-234 (1953) · Zbl 0052.12601
[8] Krein, S. G., Linear Differential Equations in Banach Spaces (1971), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0636.34056
[9] Li, Y., The global solutions of initial value problem for abstract semilinear evolution equations, Acta Anal. Funct. Appl., 3, 339-347 (2001) · Zbl 1015.47047
[10] Liang, J.; Van Casteren, J.; Xiao, T.-J., Nonlocal Cauchy problems for semilinear evolution equations, Nonlinear Anal., 50A, 173-189 (2002) · Zbl 1009.34052
[11] Martin, R., Nonlinear Operators and Differential Equations in Banach Spaces (1976), Wiley: Wiley New York
[12] Papageorgiou, N. S., On integral inclusions of Volterra type in Banach spaces, Czechoslovak Math. J., 42, 693-714 (1992) · Zbl 0781.45014
[13] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations (1983), Springer-Verlag: Springer-Verlag Berlin · Zbl 0516.47023
[14] Yosida, K., On the differentiability and the representation of one-parameter semigroups of linear operators, J. Math. Soc. Japan, 1, 15-21 (1949)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.