×

zbMATH — the first resource for mathematics

Kolmogorov theory via finite-time averages. (English) Zbl 1083.35091
Summary: Several relations from the Kolmogorov theory of fully-developed three-dimensional turbulence are rigorously established for finite-time averages over Leray-Hopf weak solutions of the Navier-Stokes equations. The Navier-Stokes equations are considered with periodic boundary conditions and an external forcing term. The main parameter is the Grashof number associated with the forcing term. The relations rigorously proved in this article include estimates for the energy dissipation rate, the Kolmogorov wavenumber, the Taylor wavenumber, the Reynolds number, and the energy cascade process. For some estimates the averaging time depends on the macroscale wavenumber and the kinematic viscosity alone, while for others such as the Kolmogorov energy dissipation law and the energy cascade, the estimates depend also on the Grashof number. As compared with earlier works by some of the authors the more physical concept of finite-time average is replacing the concept of infinite-time average used before.

MSC:
35Q30 Navier-Stokes equations
76F55 Statistical turbulence modeling
37L15 Stability problems for infinite-dimensional dissipative dynamical systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Batchelor, G.K., The theory of homogeneous turbulence, (1953), Cambridge University Press Cambridge · Zbl 0053.14404
[2] Bercovici, H.; Constantin, P.; Foias, C.; Manley, O.P., Exponential decay of the power spectrum of turbulence, J. stat. phys., 80, 579-602, (1995) · Zbl 1081.35505
[3] Childress, S.; Kerswell, R.R.; Gilbert, A.D., Bounds on dissipation for navier – stokes flow with Kolmogorov forcing, Phys. D, 158, 105-128, (2001) · Zbl 1098.76525
[4] Constantin, P.; Doering, C.R., Variational bounds on energy dissipation in incompressible flows: shear flow, Phys. rev. E, 49, 4087-4099, (1994)
[5] Constantin, P.; Doering, C.R., Variational bounds on energy dissipation in incompressible flows II: channel flow, Phys. rev. E, 51, 3192-3198, (1995)
[6] Constantin, P.; Foias, C., Navier – stokes equations, (1988), University of Chicago Press Chicago · Zbl 0687.35071
[7] Constantin, P.; Foias, C.; Manley, O.P.; Temam, R., Connexion entre la théorie mathématique des équations de navier – stokes et la théorie conventionnelle de la turbulence, C. R. acad. sci. Paris, Sér. I, 297, 599-602, (1983) · Zbl 0531.76066
[8] Constantin, P.; Foias, C.; Temam, R., Attractors representing turbulent flows, Mem. amer. math. soc., 53, 314, (1985) · Zbl 0567.35070
[9] Doering, C.R.; Constantin, P., Energy dissipation in shear driven turbulence, Phys. rev. lett., 69, 1648-1651, (1992)
[10] Doering, C.R.; Eckhardt, B.; Schumacher, J., Energy dissipation in body-forced plane shear flow, J. fluid mech., 494, 275-284, (2003) · Zbl 1051.76028
[11] Doering, C.R.; Foias, C., Energy dissipation in body-forced turbulence, J. fluid mech., 467, 289-306, (2002) · Zbl 1029.76025
[12] Doering, C.R.; Gibbon, J.D., Applied analysis of the navier – stokes equations, () · Zbl 0838.76016
[13] Foias, C., What do the navier – stokes equations tell us about turbulence?, Harmonic analysis and nonlinear differential equations (riverside, CA, 1995), Contemp. math., 208, 151-180, (1997) · Zbl 0890.76030
[14] Foias, C.; Jolly, M.S.; Manley, O.P., Kraichnan turbulence via finite time averages, Commun. math. phys., 255, 329-361, (2005) · Zbl 1065.76101
[15] Foias, C.; Jolly, M.S.; Manley, O.P.; Rosa, R., Statistical estimates for the navier – stokes equations and the kraichnan theory of 2-D fully developed turbulence, J. stat. phys., 108, 3-4, 591-645, (2002) · Zbl 1158.76327
[16] Foias, C.; Jolly, M.S.; Manley, O.P.; Rosa, R., On the landau – lifschitz degrees of freedom in 2-D turbulence, J. stat. phys., 111, 3-4, 1017-1019, (2003) · Zbl 1028.76014
[17] Foias, C.; Manley, O.P.; Rosa, R.; Temam, R., Navier – stokes equations and turbulence, () · Zbl 0994.35002
[18] Foias, C.; Manley, O.P.; Rosa, R.; Temam, R., Cascade of energy in turbulent flows, C. R. acad. sci. Paris, Sér. I, 332, 509-514, (2001) · Zbl 0986.35089
[19] Foias, C.; Manley, O.P.; Rosa, R.; Temam, R., Estimates for the energy cascade in three-dimensional turbulent flows, C. R. acad. sci. Paris, Sér. I, 333, 499-504, (2001) · Zbl 1172.76319
[20] Foias, C.; Manley, O.P.; Temam, R., Bounds for the Mean dissipation of 2-D enstrophy and 3-D energy in turbulent flows, Phys. lett. A, 174, 210-215, (1993)
[21] Frisch, U., Turbulence: the legacy of A.N. Kolmogorov, (1995), Cambridge University Press
[22] Kerswell, R.R., Unification of variational methods for turbulent shear flows: the background method of doering – constantin and the Mean-fluctuation method of howard-busse, Phys. D, 121, 175-192, (1998) · Zbl 0958.76034
[23] Kolmogorov, A.N., The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, C. R. (doklady) acad. sci. URSS (N.S.), 30, 301-305, (1941) · JFM 67.0850.06
[24] Hinze, J.O., Turbulence, (1975), McGraw-Hill New York · Zbl 0117.42904
[25] Ladyzhenskaya, O., The mathematical theory of viscous incompressible flow, (1963), Gordon and Breach Science Publishers New York, London, (R.A. Silverman, Trans. from Russian) · Zbl 0121.42701
[26] Landau, L.; Lifshitz, E., Mécanique des fluids, ()
[27] Lesieur, M., Turbulence in fluids, () · Zbl 1068.76523
[28] Marchioro, C., Remark on the energy dissipation in shear driven turbulence, Phys. D, 74, 3-4, 395-398, (1994) · Zbl 0815.76038
[29] Miranville, A.; Wang, X., Upper bounds on the dimension of attractors for navier – stokes equations with non-homogeneous boundary conditions, Discrete contin. dyn. syst., 2, 1, 95-110, (1996)
[30] Monin, A.S.; Yaglom, A.M., Statistical fluid mechanics: mechanics of turbulence, (1975), MIT Press Cambridge, MA
[31] Nicodemus, R.; Grossman, S.; Holthaus, M., The background flow method. part 1. constructive approach to bounds on energy dissipation, J. fluid mech., 363, 281-300, (1998) · Zbl 0923.76058
[32] Rosa, R., Some results on the navier – stokes equations in connection with the statistical theory of stationary turbulence, Appl. math., 47, 6, 485-516, (2002) · Zbl 1090.76017
[33] Rose, H.A.; Sulem, P.-L., Fully developed turbulence and statistical mechanics, J. physique, 39, 441-484, (1978)
[34] Sreenivasan, K.R., An update on the energy dissipation rate in isotropic turbulence, Phys. fluids, 10, 2, 528-529, (1998) · Zbl 1185.76674
[35] Temam, R., Navier – stokes equations. theory and numerical analysis, (), Reedition in 2001 in the AMS Chelsea series, AMS, Providence · Zbl 0383.35057
[36] Temam, R., Navier – stokes equations and nonlinear functional analysis, () · Zbl 0833.35110
[37] Temam, R., Infinite dimensional dynamical systems in mechanics and physics, (), 2nd edition, 1997 · Zbl 0871.35001
[38] Wang, X., Time averaged energy dissipation rate for shear driven flows in \(\mathbb{R}^n\), Phys. D, 99, 555-563, (1997) · Zbl 0897.76019
[39] Wang, X., Effect of tangential derivative in the boundary layer on time averaged energy dissipation rate, Phys. D, 144, 142-153, (2000) · Zbl 0988.76026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.