zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Chaos in periodically forced Holling type II predator-prey system with impulsive perturbations. (English) Zbl 1083.37537
Summary: The effect of periodic forcing and impulsive perturbations on a predator-prey model with Holling-type-II functional response is investigated. The periodic forcing is affected by assuming a periodic variation in the intrinsic growth rate of the prey. The impulsive perturbation is affected by introducing periodic constant impulsive immigration of the predator. The dynamical behavior of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that periodic forcing and impulsive perturbation can very easily give rise to complex dynamics, including (1) quasi-periodic oscillating, (2) period-doubling cascade, (3) chaos, (4) period-halfing cascade, (5) nonunique dynamics.

MSC:
37N25Dynamical systems in biology
37D45Strange attractors, chaotic dynamics
92D25Population dynamics (general)
WorldCat.org
Full Text: DOI
References:
[1] Holling, C. S.: The functional response of predator to prey density and its role in mimicry and population regulation. Mem ent sec can 45, 1-60 (1965)
[2] Tang, S. Y.; Chen, L. S.: Quasiperiodic solutions and chaos in a periodically forced predator-prey model with age structure for predator. Int J bifurcat chaos 13, No. 4, 973-980 (2003) · Zbl 1063.37586
[3] Sabin, G. C. W.; Summer, D.: Chaos in a periodic forced predator-prey ecosystem model. Math biosci 113, 91-113 (1993) · Zbl 0767.92028
[4] Rinaldi, S.; Muratori, S.; Kuznetsov, Yu.A.: Multiple attractors, catastrophes and chaos in seasonally perturbed predator-prey communities. Bull math biol 55, 15-35 (1993) · Zbl 0756.92026
[5] Gakkhar, S.; Naji, R. K.: Seasonally perturbed prey-predator system with predator-dependent functional response. Chaos, solitons & fractals 18, 1075-1083 (2003) · Zbl 1068.92045
[6] Cushing, J. M.: Periodic time-dependent predator-prey systems. SIAM J appl math 10, 384-400 (1977) · Zbl 0348.34031
[7] Cushing, J. M.: Periodic Kolmogorov systems. SIAM J math anal 13, 811-827 (1987) · Zbl 0506.34039
[8] Bardi, M.: Predator-prey models in periodically fluctuating environments. J math biol 12, 127-140 (1981) · Zbl 0466.92019
[9] Van Lentern, J. C.: Environmental manipulation advantageous to natural enemies of pests. Integrate pest management, 123-166 (1987)
[10] Van Lenteren, J. C.: Integrate pest management in protected crops. Integrate pest management, 311-320 (1995)
[11] Roberts, M. G.; Kao, R. R.: The dynamics of an infectious disease in a population with birth pulses. Math biosci 149, 23-36 (1998) · Zbl 0928.92027
[12] Tang, S. Y.; Chen, L. S.: Density-dependent birth rate, birth pulse and their population dynamic consequences. J math biol 44, 185-199 (2002) · Zbl 0990.92033
[13] Shulgin, B.; Stone, L.; Agur, Z.: Pulse vaccination strategy in the SIR epidemic model. Bull math biol 60, 1-26 (1998) · Zbl 0941.92026
[14] D’onofrio, A.: Stability properties of pulse vaccination strategy in SEIR epidemic model. Math comput modell 26, 59-72 (1997)
[15] Panetta, J. C.: A mathematical model of periodically pulsed chemotherapy: tumor recurrence and metastasis in a competitive environment. Bull math biol 58, 425-447 (1996) · Zbl 0859.92014
[16] Lakmeche, A.; Arino, O.: Bifurcation of non trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment. Dyn contin discrete impulsive syst 7, 165-187 (2000) · Zbl 1011.34031
[17] Ballinger, G.; Liu, X.: Permanence of population growth models with impulsive effects. Math comput modell 26, 59-72 (1997) · Zbl 1185.34014
[18] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. C.: Theory of impulsive differential equations. (1989) · Zbl 0719.34002
[19] Bainov, D. D.; Simeonov, D. D.: Impulsive differential equations: periodic solutions and applications. (1993) · Zbl 0815.34001
[20] Chen, L. S.; Jing, Z.: The existence and uniqueness of predator-prey differential equations. Chain sci bull 9, 521-530 (1984)
[21] Liu, X. N.; Chen, L. S.: Complex dynamics of Holling type II Lotka-Volterra predator-prey system with impulsive perturbations on the predator. Chaos, solitons & fractals 16, 311-320 (2003) · Zbl 1085.34529
[22] Tang, S. Y.; Chen, L. S.: Chaos in functional response host-parasitoid ecosystem models. Chaos, solitons & fractals 13, 875-884 (2002) · Zbl 1022.92042