zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Essential approximate point spectra and Weyl’s theorem for operator matrices. (English) Zbl 1083.47006
The authors characterize the essential approximate point spectrum and Weyl spectrum of a $2\times 2$ upper triangular operator matrix $M_C$, where $M_C=\left(\smallmatrix A&C\\ 0&B\endsmallmatrix\right)$ is an operator acting on the Hilbert space $\Cal{H}\oplus \Cal{K}$. In addition, the authors consider Weyl’s theorem, Browder’s theorem, a-Weyl’s theorem and a-Browder’s theorem for $M_C$.

47A10Spectrum and resolvent of linear operators
47A53(Semi-) Fredholm operators; index theories
Full Text: DOI
[1] Apostol, C.: The reduced minimum modulus. Michigan math. J. 32, 279-294 (1985) · Zbl 0613.47008
[2] Hong-Ke, D.; Jin, P.: Perturbation of spectrums of $2\times 2$ operator matrices. Proc. amer. Math. soc. 121, 761-766 (1994) · Zbl 0814.47016
[3] Djordjević, S. V.; Djordjević, D. S.: Weyl’s theorems: continuity of the spectrum and quasihyponormal operators. Acta sci. Math. (Szeged) 64, 259-269 (1998) · Zbl 0918.47014
[4] Han, J. K.; Lee, H. Y.; Lee, W. Y.: Invertible completions of $2\times 2$ upper triangular operator matrices. Proc. amer. Math. soc. 128, 119-123 (2000) · Zbl 0944.47004
[5] Han, Y. M.; Djordjević, S. V.: A-Weyl’s theorem for operator matrices. Proc. amer. Math. soc. 130, 715-722 (2001)
[6] Harte, R. E.; Lee, W. Y.: Another note on Weyl’s theorem. Trans. amer. Math. soc. 349, 2115-2124 (1997) · Zbl 0873.47001
[7] Hwang, I. S.; Lee, W. Y.: The boundedness below of $2\times $ upper triangular operator matrices. Integral equations operator theory 39, 267-276 (2001) · Zbl 0986.47004
[8] Lee, Woo Young: Weyl spectra of operator matrices. Proc. amer. Math. soc. 129, 131-138 (2000) · Zbl 0965.47011
[9] Lee, Woo Young: Weyl’s theorem for operator matrices. Integral equations operator theory 32, 319-331 (1998) · Zbl 0923.47001
[10] V. Rakočevic&grave: Operators obeying a-Weyl’s theorem. Rev. roumaine math. Pures appl. 34, 915-919 (1989)
[11] Taylor, A. E.: Theorems on ascent, descent, nullity and defect of linear operators. Math. ann. 163, 18-49 (1966) · Zbl 0138.07602
[12] Weyl, H.: Über beschränkte quadratische formen, deren differenz vollstetig ist. Rend. circ. Mat. Palermo 27, 373-392 (1909) · Zbl 40.0395.01