Linnér, Anders Periodic geodesics generator. (English) Zbl 1083.53060 Exp. Math. 13, No. 2, 199-206 (2004). The author describes a computational algorithm for finding periodic geodesics on level surfaces. A periodic geodesic is obtained as the limit of a negative gradient trajectory of the total squared curvature functional. The algorithm exploits the inverse to the parallel transport equation that uses the geodesic curvature together with the initial point and direction to recover the curve. Several examples are given, in particular, the algorithm is illustrated in a sphere-like surface that is neither an ellipsoid, nor a surface of revolution. From computational point of view, the algorithm is adopted for Mathematica 5.0. Reviewer: Mikhail Malakhal’tsev (Kazan) Cited in 2 Documents MSC: 53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010) 58E10 Variational problems in applications to the theory of geodesics (problems in one independent variable) 53C22 Geodesics in global differential geometry Keywords:curve straightening; geodesic; gradient trajectories; steepest descent; periodic geodesic Software:Mathematica × Cite Format Result Cite Review PDF Full Text: DOI Euclid EuDML References: [1] DOI: 10.1142/S0129167X93000029 · Zbl 0791.53048 · doi:10.1142/S0129167X93000029 [2] DOI: 10.1007/BF02100612 · Zbl 0766.53037 · doi:10.1007/BF02100612 [3] DOI: 10.1512/iumj.1990.39.39049 · Zbl 0801.53035 · doi:10.1512/iumj.1990.39.39049 [4] Hadamard J., J. Math. Pures Appl. (5) 4 pp 27– (1898) [5] DOI: 10.1155/S1073792893000285 · Zbl 0809.53053 · doi:10.1155/S1073792893000285 [6] DOI: 10.1515/crll.1839.19.309 · ERAM 019.0621cj · doi:10.1515/crll.1839.19.309 [7] DOI: 10.1007/978-3-642-61881-9 · doi:10.1007/978-3-642-61881-9 [8] DOI: 10.1007/BF00127856 · Zbl 0653.53032 · doi:10.1007/BF00127856 [9] DOI: 10.1007/BF02099668 · Zbl 0735.58013 · doi:10.1007/BF02099668 [10] DOI: 10.1016/S0926-2245(02)00144-4 · Zbl 1035.53093 · doi:10.1016/S0926-2245(02)00144-4 [11] Linnéet A., ”Free Curve Straightening.” (2003) · Zbl 1035.53093 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.