Ozsváth, Peter; Szabó, Zoltán Heegaard Floer homology and contact structures. (English) Zbl 1083.57042 Duke Math. J. 129, No. 1, 39-61 (2005). In [Ann. Math. (2) 159, No. 3, 1027–1158 (2004; Zbl 1073.57009)], the authors of the paper under review defined several Floer homology groups for closed oriented 3-manifolds \(Y\) with a Spin\(^c\) structure \(s\) associated to \(Y\) via a Heegaard diagram for \(Y\) and the Lagrangian Floer homology construction. J. Martinet [Proc. Liverpool Singularities-Symp. II, Dept. Pure Math. Univ. Liverpool 1969–1970, 142–163 (1971; Zbl 0215.23003)] proved that every \(3\)-manifold admits a contact structure. Y. Eliashberg [Invent. Math. 98, No. 3, 623–637 (1989; Zbl 0684.57012)] gave a classification for the overtwisted contact structures on 3-manifolds. For a closed, oriented three-manifold \(Y\) endowed with a cooriented contact structure \(\xi\), E. Giroux [Proceedings of the international congress of mathematicians, ICM 2002, Beijing, China, August 20–28, 2002. Vol. II: Invited lectures. Beijing: Higher Education Press. 405–414 (2002; Zbl 1015.53049)] asserted the existence of an open book decomposition adapted to \(\xi\). For a contact structure on a closed, oriented three-manifold \(Y\), the paper under review uses Giroux’s open book decomposition to describe an invariant that takes values in the three-manifold’s Floer homology \(\widehat{HF}\), which vanishes for overwisted contact structures and is nonzero for Stein-fillable ones. Reviewer: Guang-Cun Lu (Beijing) Cited in 17 ReviewsCited in 101 Documents MSC: 57R58 Floer homology 53D10 Contact manifolds (general theory) 57R17 Symplectic and contact topology in high or arbitrary dimension Keywords:contact structure; three-manifold; Floer homology Citations:Zbl 1073.57009; Zbl 0215.23003; Zbl 0684.57012; Zbl 1015.53049 PDF BibTeX XML Cite \textit{P. Ozsváth} and \textit{Z. Szabó}, Duke Math. J. 129, No. 1, 39--61 (2005; Zbl 1083.57042) Full Text: DOI arXiv OpenURL References: [1] Y. Eliashberg, Classification of overtwisted contact structures on \(3\) -manifolds, Invent. Math. 98 (1989), 623–637. · Zbl 0684.57012 [2] –. –. –. –., “Filling by holomorphic discs and its applications” in Geometry of Low-Dimensional Manifolds (Durham, U.K., 1989) , London Math. Soc. Lecture Note Ser. 151 , Cambridge Univ. Press, Cambridge, 1990, 45–67. · Zbl 0731.53036 [3] –. –. –. –., A few remarks about symplectic filling , Geom. Topol. 8 (2004), 277–293. · Zbl 1067.53070 [4] J. B. Etnyre, On symplectic fillings , Algebr. Geom. Topol. 4 (2004), 73–80. · Zbl 1078.53074 [5] E. Giroux, “Géométrie de contact: de la dimension trois vers les dimensions supérieures” in Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) , Higher Ed. Press, Beijing, 2002, 405–414. · Zbl 1015.53049 [6] R. E. Gompf and A. I. Stipsicz, \(4\) -Manifolds and Kirby Calculus, Grad. Stud. Math. 20 , Amer. Math. Soc., Providence, 1999. · Zbl 0933.57020 [7] J. W. Gray, Some global properties of contact structures , Ann. of Math. (2) 69 (1959), 421–450. JSTOR: · Zbl 0092.39301 [8] M. Gromov, Pseudoholomorphic curves in symplectic manifolds , Invent. Math. 82 (1985), 307–347. · Zbl 0592.53025 [9] P. B. Kronheimer and T. S. Mrowka, Monopoles and contact structures , Invent. Math. 130 (1997), 209–255. · Zbl 0892.53015 [10] –. –. –. –., Scalar curvature and the Thurston norm , Math. Res. Lett. 4 (1997), 931–937. · Zbl 0892.57011 [11] P. Lisca and A. I. Stipsicz, Ozsváth-Szabó invariants and tight contact three-manifolds, I, Geom. Topol. 8 (2004), 925–945. · Zbl 1059.57017 [12] ——–, Ozsváth-Szabó invariants and tight contact three-manifolds, II, · Zbl 1112.57005 [13] P. Ozsváth and Z. Szabó, Heegaard Floer homology and alternating knots , Geom. Topol. 7 (2003), 225–254. · Zbl 1130.57303 [14] –. –. –. –., Holomorphic disks and genus bounds , Geom. Topol. 8 (2004), 311–334. · Zbl 1056.57020 [15] –. –. –. –., Holomorphic disks and knot invariants , Adv. Math. 186 (2004), 58–116. · Zbl 1062.57019 [16] –. –. –. –., Holomorphic disks and three-manifold invariants: Properties and applications , Ann. of Math (2) 159 (2004), 1159–1245. JSTOR: · Zbl 1081.57013 [17] –. –. –. –., Holomorphic disks and topological invariants for closed three-manifolds , Ann. of Math (2) 159 (2004), 1027–1158.. JSTOR: · Zbl 1073.57009 [18] –. –. –. –., Holomorphic triangle invariants and the topology of symplectic four-manifolds , Duke Math. J. 121 (2004), 1–34. · Zbl 1059.57018 [19] ——–, Holomorphic triangles and invariants for smooth four-manifolds , · Zbl 1099.53058 [20] J. A. Rasmussen, Floer homology and knot complements , Ph.D. dissertation, Harvard University, Cambridge, 2003. [21] W. P. Thurston and H. E. Winkelnkemper, On the existence of contact forms , Proc. Amer. Math. Soc. 52 (1975), 345–347. JSTOR: · Zbl 0312.53028 [22] I. Torisu, Convex contact structures and fibered links in \(3\)-manifolds , Internat. Math. Res. Notices 2000 , no. 9, 441–454. · Zbl 0978.53133 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.