Self-similar communication models and very heavy tails. (English) Zbl 1083.60521

Summary: Several studies of file sizes either being downloaded or stored in the World Wide Web have commented that tails can be so heavy that not only variances are infinite, but so are means. Motivated by this fact, we study the infinite node Poisson model under the assumption that transmission times are heavy tailed with infinite mean. The model is unstable but we are able to provide growth rates. Self-similar but nonstationary Gaussian process approximations are provided for the number of active sources, cumulative input, buffer content and time to buffer overflow.


60K25 Queueing theory (aspects of probability theory)
60F05 Central limit and other weak theorems
60F10 Large deviations
60F17 Functional limit theorems; invariance principles
60G18 Self-similar stochastic processes
68U35 Computing methodologies for information systems (hypertext navigation, interfaces, decision support, etc.)
94C99 Circuits, networks
Full Text: DOI Euclid


[1] Arlitt, M. and Williamson, C. L. (1996). Web server workload characterization: the search for invariants (extended version). In Proceedings of the ACM Sigmetrics Conference Philadelphia. Available from mfa126,carey @cs.usask.ca.
[2] Asmussen, S. (1987). Applied Probability and Queues. Wiley, Chichester. · Zbl 0624.60098
[3] Beirlant, J., Vynckier, P. and Teugels, J. (1996). Tail index estimation, Pareto quantile plots, and regression diagnostics. J. Amer. Statist. Assoc. 91 1659-1667. JSTOR: · Zbl 0881.62077 · doi:10.2307/2291593
[4] Billingsley, P. (1968). Convergence of Probability Measures. Wiley, NewYork. · Zbl 0172.21201
[5] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation. Cambridge Univ. Press. · Zbl 0617.26001
[6] Crovella, M. and Bestavros, A. (1995). Explaining world wide web traffic self-similarity. Preprint TR-95-015 from crovella,best @cs.bu.edu.
[7] Crovella, M. and Bestavros, A. (1996). Self-similarity in world wide web traffic: evidence and possible causes. In Proceedings of the 1996 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems 24 160-169.
[8] Crovella, M., Bestavros, A. and Taqqu, M. (1999). Heavy-tailed probability distributions in the world wide web. In A Practical Guide to Heavy Tails: Statistical Techniques for Analyzing Heavy Tailed Distributions (M. S. Taqqu, R. Adler and R. Feldman, eds.) Birkhäuser, Boston. · Zbl 0945.62130
[9] Crovella, M., Kim, G. and Park, K. (1996). On the relationship between file sizes, transport protocols, and self-similar network traffic. In Proceedings of the Fourth International Conference on Network Protocols 171-180.
[10] Crovella, M., Park, K. and Kim, G. (1997). On the effect of traffic self-similarity on network performance. In Proceedings of the SPIE International Conference on Performance and Control of Network Systems.
[11] Cunha, A. and Crovella, M. (1995). Characteristics of www client-based traces. Preprint BU-CS-95-010. Available from crovella,best @cs.bu.edu.
[12] Durrett, R. and Resnick, S. (1977). Weak convergence with random indices. J. Stochastic Process. Appl. 5 213-220. · Zbl 0368.60028 · doi:10.1016/0304-4149(77)90031-X
[13] Erramilli, A., Narayan, O. and Willinger, W. (1996). Experimental queueing analysis with long-range dependent packet traffic. IEEE/ACM Trans. Network Comput. 4 209-223.
[14] Geluk, J. L. and de Haan, L. (1987). Regular Variation, Extensions and Tauberian Theorems. CWI Tract. Stichting Math. Centrum, Amsterdam. · Zbl 0624.26003
[15] Harrison, J. M. (1985). Brownian Motion and Stochastic Flow Systems. Wiley, NewYork. · Zbl 0659.60112
[16] Heath, D., Resnick, S. and Samorodnitsky, G. (1999). Howsystem performance is affected by the interplay of averages in a fluid queue with long range dependence induced by heavy tails. Ann. Appl. Probab. 9 352-375. · Zbl 1059.60505 · doi:10.1214/aoap/1029962746
[17] Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution. Ann. Statist. 3 1163-1174. · Zbl 0323.62033 · doi:10.1214/aos/1176343247
[18] Jelenković, P. and Lazar, A. (1998). Subexponential asymptotics of a Markov-modulated random walk with queueing applications. J. Appl. Probab. 35 325-347. · Zbl 0913.60048 · doi:10.1239/jap/1032192851
[19] Jelenković, P. and Lazar, A. (1999). Asymptotic results for multiplexing subexponential on-off processes. Adv. in Appl. Probab. 31 394-421. · Zbl 0952.60098 · doi:10.1239/aap/1029955141
[20] Konstantopoulos, T. and Lin, S. J. (1998). Macroscopic models for long-range dependent network traffic. Queueing Systems Theory Appl. 28 215-243. · Zbl 0908.90131 · doi:10.1023/A:1019190821105
[21] Kratz, M. and Resnick, S. (1996). The qq-estimator and heavy tails. Stochastic Models. 12 699-724. · Zbl 0887.62025 · doi:10.1080/15326349608807407
[22] Lamperti, J. W. (1962). Semi-stable stochastic processes. Trans. Amer. Math. Soc. 104 62-78. JSTOR: · Zbl 0286.60017 · doi:10.2307/1993933
[23] Leland, W. E., Taqqu, M. S., Willinger, W. and Wilson, D. V. (1993). On the self-similar nature of Ethernet traffic. ACM/SIGCOMM Comput. Comm. Rev. 183-193.
[24] Leland, W. E., Taqqu, M. S., Willinger, W. and Wilson, D. V. (1994). On the self-similar nature of Ethernet traffic (extended version). IEEE/ACM Trans. Networking 2 1-15.
[25] Leland, W. E., Taqqu, M. S., Willinger, W. and Wilson, D. V. (1993). Statistical analysis of high time-resolution ethernet Lan traffic measurements. In Proceedings of the 25th Symposium on the Interface between Statistics and Computer Science (M. E. Tarter and M. D. Lock, eds.) 25 146-155.
[26] Prabhu, N. U. (1998). Stochastic Storage Processes: Queues, Insurance Risk, Dams and Data Communication. Springer, NewYork. · Zbl 0888.60073
[27] Resnick, S. I. (1986). Point processes, regular variation and weak convergence. Adv. in Appl. Probab. 18 66-138. JSTOR: · Zbl 0597.60048 · doi:10.2307/1427239
[28] Resnick, S. I. (1987). Extreme Values, Regular Variation and Point Processes. Springer, New York. · Zbl 0633.60001
[29] Resnick, S. and Samorodnitsky, G. (1997). Performance decay in a single server exponential queueing model with long range dependence. Oper. Res. 45 235-243. JSTOR: · Zbl 0890.90066 · doi:10.1287/opre.45.2.235
[30] Resnick, S. and St aric a, C. (1997). Smoothing the Hill estimator. Adv. in Appl. Probab. 29 271-293. JSTOR: · Zbl 0873.60021 · doi:10.2307/1427870
[31] Taqqu, M., Willinger, W. and Sherman, R. (1997). Proof of a fundamental result in selfsimilar traffic modeling. Comput. Comm. Rev. 27 5-23.
[32] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes with Applications to Statistics. Springer, NewYork. · Zbl 0862.60002
[33] Vervaat, W. (1972). Success Epochs in Bernoulli Trials (with Applications in Number Theory). Math. Centrum, Amsterdam. · Zbl 0267.60003
[34] Willinger, W., Taqqu, M. S., Leland, M. and Wilson, D. (1995). Self-similarity in highspeed packet traffic: analysis and modelling of ethernet traffic measurements. Statist. Sci. 10 67-85. · Zbl 1148.90310 · doi:10.1214/ss/1177010131
[35] Willinger, W., Taqqu, M. S., Leland, M. and Wilson, D. (1995). Self-similarity through high variability: statistical analysis of ethernet lan traffic at the source level. Comput. Comm. Rev. 25 100-113.
[36] Willinger, W., Taqqu, M. S., Leland, M. and Wilson, D. (1997). Self-similarity through high variability: statistical analysis of ethernet lan traffic at the source level (extended version). IEEE/ACM Trans. Networking 51 71-96.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.