zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Restrictive preconditioners for conjugate gradient methods for symmetric positive definite linear systems. (English) Zbl 1083.65045
The authors analyse a class of restrictively preconditioned conjugate gradient algorithms (RPCG) for solving large sparse systems of linear equations whose coefficient matrices are symmetric and positive definite and of block two-by-two structure. After establishing the general framework of the practical RPCG methods and demonstrating its convergence, the authors describe the algebraic constructions of two special restrictive preconditioners associated with the block Jacobi and block symmetric Gauss-Seidel splittings and prove the convergence theorems of the correspondingly induced RPCG methods.

65F35Matrix norms, conditioning, scaling (numerical linear algebra)
65F10Iterative methods for linear systems
65F50Sparse matrices (numerical linear algebra)
Full Text: DOI
[1] Ashby, S. F.; Holst, M. J.; Manteuffel, T. A.; Saylor, P. E.: The role of the inner product in stopping criteria for conjugate gradient iterations. Bit 41, 26-52 (2001) · Zbl 0984.65025
[2] Axelsson, O.: Iterative solution methods. (1994) · Zbl 0795.65014
[3] Axelsson, O.; Gustafsson, I.: Preconditioning and two-level multigrid methods of arbitrary degree of approximation. Math. comput. 40, 219-242 (1983) · Zbl 0511.65079
[4] Axelsson, O.; Vassilevski, P. S.: Algebraic multilevel preconditioning methods. I. Numer. math. 56, 157-177 (1989) · Zbl 0661.65110
[5] Axelsson, O.; Vassilevski, P. S.: A survey of multilevel preconditioned iterative methods. Bit 29, 769-793 (1989) · Zbl 0694.65009
[6] Axelsson, O.; Vassilevski, P. S.: Algebraic multilevel preconditioning methods. II. SIAM J. Numer. anal. 27, 1569-1590 (1990) · Zbl 0715.65091
[7] Bai, Z. -Z.: A class of modified block SSOR preconditioners for symmetric positive definite systems of linear equations. Adv. comput. Math. 10, 169-186 (1999) · Zbl 0922.65033
[8] Bai, Z. -Z.: Modified block SSOR preconditioners for symmetric positive definite linear systems. Ann. oper. Res. 103, 263-282 (2001) · Zbl 1028.65018
[9] Bai, Z. -Z.; Li, G. -Q.: Restrictively preconditioned conjugate gradient methods for systems of linear equations. IMA J. Numer. anal. 23, 561-580 (2003) · Zbl 1046.65018
[10] Eijkhout, V. L.; Vassilevski, P. S.: The role of the strengthened Cauchy -- buniakowskii -- Schwarz inequality in multilevel methods. SIAM rev. 33, 405-419 (1991) · Zbl 0737.65026
[11] Faber, V.; Manteuffel, T. A.: Necessary and sufficient conditions for the existence of a conjugate gradient method. SIAM J. Numer. anal. 21, 352-362 (1984) · Zbl 0546.65010
[12] Golub, G. H.; Van Loan, C. F.: Matrix computations. (1996) · Zbl 0865.65009
[13] Greenbaum, A.: Iterative methods for solving linear systems. (1997) · Zbl 0883.65022
[14] Gutknecht, M. H.: Changing the norm in conjugate gradient type algorithms. SIAM J. Numer. anal. 30, 40-56 (1993) · Zbl 0851.65017
[15] Hestenes, M. R.; Stiefel, E. L.: Methods of conjugate gradients for solving linear systems. J. res. Natl. bur. Standards sec. B 49, 409-436 (1952) · Zbl 0048.09901
[16] Meijerink, J. A.; Van Der Vorst, H. A.: An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix. Math. comput. 31, 148-162 (1977) · Zbl 0349.65020
[17] Ortega, J. M.: Introduction to parallel and vector solution of linear systems. (1988) · Zbl 0669.65017
[18] Saad, Y.: Iterative methods for sparse linear systems. (1996) · Zbl 1031.65047
[19] Sun, J. -C.: On positive symmetrizable matrices and pre-symmetry iteration algorithms. Math. numer. Sin. 22, 379-384 (2000) · Zbl 1081.65542