Ambrosio, Luigi; Tilli, Paolo Selected topics on “Analysis in metric spaces”. (English) Zbl 1084.28500 Appunti dei Corsi Tenuti da Docenti della Scuola. Pisa: Scuola Normale Superiore. ii, 133 p. (2000). Summary: See the review of the final version “Analysis in metric spaces” (2004) in Zbl 1080.28001. Cited in 16 Documents MSC: 28-01 Introductory exposition (textbooks, tutorial papers, etc.) pertaining to measure and integration 28A78 Hausdorff and packing measures 28B05 Vector-valued set functions, measures and integrals 31C15 Potentials and capacities on other spaces 49J45 Methods involving semicontinuity and convergence; relaxation 30C65 Quasiconformal mappings in \(\mathbb{R}^n\), other generalizations 46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems 53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces Keywords:Hausdorff measure; Lipschitz function; Sobolev space; geodesic; Gromov distance; Pythagorean integral; doubling measure Citations:Zbl 1080.28001 × Cite Format Result Cite Review PDF