zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Two reliable methods for solving variants of the KdV equation with compact and noncompact structures. (English) Zbl 1084.35079
Summary: We use the sine-cosine and the tanh methods for solving variants of the KdV equation. Compact and noncompact physical solutions for these variants with dispersive effects are formally derived. The study also examines the role of coefficients of the derivatives of the equation and its exponents in affecting the physical structures of the solutions.

35Q53KdV-like (Korteweg-de Vries) equations
Full Text: DOI
[1] Benjamin, R. T.; Bona, J. L.; Mahony, J. J.: Model equations for long waves in nonlinear dispersive systems. Philos trans roy soc London 272, 47-78 (1972) · Zbl 0229.35013
[2] Ablowitz, M. J.; Clarkson, P. A.: Solitons, nonlinear evolution equations and inverse scattering. (1991) · Zbl 0762.35001
[3] Hereman, W.; Takaoka, M.: Solitary wave solutions of nonlinear evolution and wave equations using a direct method and MACSYMA. J phys A 23, 4805-4822 (1990) · Zbl 0719.35085
[4] Hereman, W.; Korpel, A.; Banerjee, P. P.: A general physical approach to solitary wave construction from linear solutions. Wave motion 7, 283-289 (1985)
[5] Zabusky, N. J.; Kruskal, M. D.: Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys rev lett 15, 240-243 (1965) · Zbl 1201.35174
[6] Wadati, M.: Introduction to solitons. Pramana: J phys 57, No. 5-6, 841-847 (2001)
[7] Wadati, M.: The modified kortweg-de Vries equation. J phys soc Japan 34, 1289-1296 (1973)
[8] Kadomtsev, B. B.; Petviashvili, V. I.: On the stability of solitary waves in weakly dispersive media. Sov phys dokl 15, 539-541 (1970) · Zbl 0217.25004
[9] Zakharov, V. E.; Kuznetsov, E. A.: On three-dimensional solitons. Sov phys 39, 285-288 (1974)
[10] Rosenau, P.; Hyman, J. M.: Compactons: solitons with finite wavelengths. Phys rev lett 70, No. 5, 564-567 (1993) · Zbl 0952.35502
[11] Wazwaz, A. M.: Partial differential equations: methods and applications. (2002) · Zbl 1079.35001
[12] Wazwaz, A. M.: New solitary-wave special solutions with compact support for the nonlinear dispersive $K(m,n)$ equations. Chaos, solitons & fractals 13, No. 2, 321-330 (2002) · Zbl 1028.35131
[13] Wazwaz, A. M.: General solutions with solitary patterns for the defocusing branch of the nonlinear dispersive $K(n,n)$ equations in higher dimensional spaces. Appl math comput 133, No. 2/3, 229-244 (2002) · Zbl 1027.35118
[14] Wazwaz, A. M.: Compactons and solitary patterns structures for variants of the KdV and the KP equations. Appl math comput 139, No. 1, 37-54 (2003) · Zbl 1029.35200
[15] Wazwaz, A. M.: An analytic study of compactons structures in a class of nonlinear dispersive equations. Math comput simulat 63, No. 1, 35-44 (2003) · Zbl 1021.35092
[16] Wazwaz, A. M.: The tanh method for travelling wave solutions of nonlinear equations. Appl math comput 154, No. 3, 713-723 (2004) · Zbl 1054.65106
[17] Bi, Q.: Dynamics and modulated chaos of coupled oscillators. Int J bifurcation chaos 8, 337-346 (2004) · Zbl 1070.34062
[18] Zhang, Z.; Bi, Q.: Bifurcations of traveling wave solutions in a compound KdV equation. Chaos, solitons & fractals 9, No. 23, 1185-1194 (2005) · Zbl 1070.35081
[19] Malfliet, W.: The tanh method: a tool for solving certain classes of nonlinear evolution and wave equations. J comput appl math 164-165, 529-541 (2004) · Zbl 1038.65102
[20] Malfliet, W.: Solitary wave solutions of nonlinear wave equations. Am J phys 60, No. 7, 650-654 (1992) · Zbl 1219.35246
[21] Zayed, E. M. E.; Zedan, H. A.; Gepreel, K. A.: Group analysis and modified extended tanh-function to find the invariant solutions and soliton solutions for nonlinear Euler equations. Int J nonlinear sci numer simulation 5, No. 3, 221-234 (2004)
[22] Abdusalam, H. A.: On an improved complex tanh-function method. Int J nonlinear sci numer simulation 6, No. 2, 99-106 (2005)