Nonparametric methods for inference in the presence of instrumental variables. (English) Zbl 1084.62033

Summary: We suggest two nonparametric approaches, based on kernel methods and orthogonal series to estimating regression functions in the presence of instrumental variables. For the first time in this class of problems, we derive optimal convergence rates, and show that they are attained by particular estimators. In the presence of instrumental variables the relation that identifies the regression function also defines an ill-posed inverse problem, the “difficulty” of which depends on eigenvalues of a certain integral operator which is determined by the joint density of endogenous and instrumental variables. We delineate the role played by problem difficulty in determining both the optimal convergence rate and the appropriate choice of smoothing parameter.


62G08 Nonparametric regression and quantile regression
62H12 Estimation in multivariate analysis
62G20 Asymptotic properties of nonparametric inference
Full Text: DOI arXiv


[1] Blundell, R. and Powell, J. L. (2003). Endogeneity in nonparametric and semiparametric regression models. In Advances in Economics and Econometrics : Theory and Applications (M. Dewatripont, L. P. Hansen and S. J. Turnovsky, eds.) 2 312–357. Cambridge Univ. Press.
[2] Cavalier, L., Golubev, G. K., Picard, D. and Tsybakov, A. B. (2002). Oracle inequalities for inverse problems. Ann. Statist. 30 843–874. · Zbl 1029.62032 · doi:10.1214/aos/1028674843
[3] Darolles, S., Florens, J.-P. and Renault, E. (2002). Nonparametric instrumental regression. Working paper, GREMAQ, Univ. Social Science, Toulouse. · Zbl 1274.62277
[4] Donoho, D. L. (1995). Nonlinear solution of linear inverse problems by wavelet–vaguelette decomposition. Appl. Comput. Harmon. Anal. 2 101–126. · Zbl 0826.65117 · doi:10.1006/acha.1995.1008
[5] Efromovich, S. and Koltchinskii, V. (2001). On inverse problems with unknown operators. IEEE Trans. Inform. Theory 47 2876–2894. · Zbl 1017.94508 · doi:10.1109/18.959267
[6] Florens, J.-P. (2003). Inverse problems and structural econometrics: The example of instrumental variables. In Advances in Economics and Econometrics : Theory and Applications (M. Dewatripont, L. P. Hansen and S. J. Turnovsky, eds.) 2 284–311. Cambridge Univ. Press.
[7] Groetsch, C. (1984). The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind . Pitman, London. · Zbl 0545.65034
[8] Johnstone, I. M. (1999). Wavelet shrinkage for correlated data and inverse problems: Adaptivity results. Statist. Sinica 9 51–83. · Zbl 1065.62519
[9] Kress, R. (1999). Linear Integral Equations , 2nd ed. Springer, New York. · Zbl 0920.45001
[10] Mathé, P. and Pereverzev, S. V. (1999). Optimal discretization and degrees of ill-posedness for inverse estimation in Hilbert scales in the presence of random noise. Preprint No. 469, Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin.
[11] Nashed, M. Z. and Wahba, G. (1974). Generalized inverses in reproducing kernel spaces: An approach to regularization of linear operator equations. SIAM J. Math. Anal. 5 974–987. · Zbl 0287.47009 · doi:10.1137/0505095
[12] Newey, W. K. and Powell, J. L. (2003). Instrumental variable estimation of nonparametric models. Econometrica 71 1565–1578. · Zbl 1154.62415 · doi:10.1111/1468-0262.00459
[13] Newey, W. K., Powell, J. L. and Vella, F. (1999). Nonparametric estimation of triangular simultaneous equations models. Econometrica 67 565–603. · Zbl 1035.62031 · doi:10.1111/1468-0262.00037
[14] O’Sullivan, F. (1986). A statistical perspective on ill-posed inverse problems (with discussion). Statist. Sci. 1 502–527. · Zbl 0625.62110 · doi:10.1214/ss/1177013525
[15] Tikhonov, A. and Arsenin, V. (1977). Solutions of Ill-Posed Problems . Winston, Washington. · Zbl 0354.65028
[16] Van Rooij, A. and Ruymgaart, F. H. (1999). On inverse estimation. In Asymptotics , Nonparametrics , and Time Series (S. Ghosh, ed.) 579–613. Dekker, New York. · Zbl 1069.62521
[17] Wahba, G. (1973). Convergence rates of certain approximate solutions to Fredholm integral equations of the first kind. J. Approximation Theory 7 167–185. · Zbl 0252.65100 · doi:10.1016/0021-9045(73)90064-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.