×

Construction of optimal multi-level supersaturated designs. (English) Zbl 1084.62070

Summary: A supersaturated design is a design whose run size is not large enough for estimating all the main effects. The goodness of multi-level supersaturated designs can be judged by the generalized minimum aberration criterion proposed by the authors [ibid. 29, No. 4, 1066–1077 (2001; Zbl 1041.62067)]. A new lower bound is derived and general construction methods are proposed for multi-level supersaturated designs.
Inspired by the S. Addelman and O. Kempthorne’s construction of orthogonal arrays [Ann. Math. Stat. 32, 1167–1176 (1961; Zbl 0107.36001)] several classes of optimal multi-level supersaturated designs are given in explicit form: Columns are labeled with linear or quadratic polynomials and rows are points over a finite field. Additive characters are used to study the properties of the resulting designs. Some small optimal supersaturated designs of 3, 4 and 5 levels are listed with their properties.

MSC:

62K15 Factorial statistical designs
62K05 Optimal statistical designs
05B15 Orthogonal arrays, Latin squares, Room squares

References:

[1] Addelman, S. and Kempthorne, O. (1961). Some main-effect plans and orthogonal arrays of strength two. Ann. Math. Statist. 32 1167–1176. · Zbl 0107.36001 · doi:10.1214/aoms/1177704855
[2] Aggarwal, M. L. and Gupta, S. (2004). A new method of construction of multi-level supersaturated designs. J. Statist. Plann. Inference 121 127–134. · Zbl 1038.62068 · doi:10.1016/S0378-3758(02)00504-9
[3] Ai, M.-Y. and Zhang, R.-C. (2004). Projection justification of generalized minimum aberration for asymmetrical fractional factorial designs. Metrika 60 279–285. · Zbl 1083.62071 · doi:10.1007/s001840300310
[4] Booth, K. H. V. and Cox, D. R. (1962). Some systematic supersaturated designs. Technometrics 4 489–495. · Zbl 0109.12201 · doi:10.2307/1266285
[5] Box, G. E. P. and Meyer, R. D. (1986). An analysis for unreplicated fractional factorials. Technometrics 28 11–18. · Zbl 0586.62168 · doi:10.2307/1269599
[6] Bulutoglu, D. A. and Cheng, C.-S. (2004). Construction of \(E(s^2)\)-optimal supersaturated designs. Ann. Statist. 32 1662–1678. · Zbl 1105.62362 · doi:10.1214/009053604000000472
[7] Butler, N. A., Mead, R., Eskridge, K. M. and Gilmour, S. G. (2001). A general method of constructing \(E(s^2)\)-optimal supersaturated designs. J. R. Stat. Soc. Ser. B Stat. Methodol. 63 621–632. · Zbl 1040.62064 · doi:10.1111/1467-9868.00303
[8] Chatterjee, K. and Gupta, S. (2003). Construction of supersaturated designs involving \(s\)-level factors. J. Statist. Plann. Inference 113 589–595. · Zbl 1014.62093 · doi:10.1016/S0378-3758(02)00109-X
[9] Chen, J. and Wu, C. F. J. (1991). Some results on \(s^n-k\) fractional factorial designs with minimum aberration or optimal moments. Ann. Statist. 19 1028–1041. · Zbl 0725.62068 · doi:10.1214/aos/1176348135
[10] Cheng, C.-S. (1997). \(E (s^2)\)-optimal supersaturated designs. Statist. Sinica 7 929–939. · Zbl 1067.62560
[11] Cheng, C.-S., Deng, L.-Y. and Tang, B. (2002). Generalized minimum aberration and design efficiency for nonregular fractional factorial designs. Statist. Sinica 12 991–1000. · Zbl 1004.62065
[12] Deng, L.-Y. and Tang, B. (1999). Generalized resolution and minimum aberration criteria for Plackett–Burman and other nonregular factorial designs. Statist. Sinica 9 1071–1082. · Zbl 0942.62084
[13] Fang, K.-T., Lin, D. K. J. and Ma, C.-X. (2000). On the construction of multi-level supersaturated designs. J. Statist. Plann. Inference 86 239–252. · Zbl 0964.62078 · doi:10.1016/S0378-3758(99)00163-9
[14] Fries, A. and Hunter, W. G. (1980). Minimum aberration \(2^k-p\) designs. Technometrics 22 601–608. · Zbl 0453.62063 · doi:10.2307/1268198
[15] Hedayat, A. S., Sloane, N. J. A. and Stufken, J. (1999). Orthogonal Arrays : Theory and Applications . Springer, New York. · Zbl 0935.05001
[16] Li, W. W. and Wu, C. F. J. (1997). Columnwise–pairwise algorithms with applications to the construction of supersaturated designs. Technometrics 39 171–179. · Zbl 0889.62066 · doi:10.2307/1270905
[17] Lidl, R. and Niederreiter, H. (1997). Finite Fields , 2nd ed. Cambridge Univ. Press. · Zbl 1139.11053
[18] Lin, D. K. J. (1993). A new class of supersaturated designs. Technometrics 35 28–31.
[19] Lin, D. K. J. (1995). Generating systematic supersaturated designs. Technometrics 37 213–225. · Zbl 0822.62062 · doi:10.2307/1269622
[20] Liu, Y. and Dean, A. (2004). \(k\)-circulant supersaturated designs. Technometrics 46 32–43.
[21] Lu, X., Hu, W. and Zheng, Y. (2003). A systematic procedure in the construction of multi-level supersaturated design. J. Statist. Plann. Inference 115 287–310. · Zbl 1127.62395 · doi:10.1016/S0378-3758(02)00116-7
[22] Lu, X. and Sun, Y. (2001). Supersaturated design with more than two levels. Chinese Ann. Math. Ser. B 22 183–194. · Zbl 0972.62056 · doi:10.1142/S0252959901000188
[23] Ma, C.-X. and Fang, K.-T. (2001). A note on generalized aberration in factorial designs. Metrika 53 85–93. · Zbl 0990.62067 · doi:10.1007/s001840100112
[24] Mukerjee, R. and Wu, C. F. J. (1995). On the existence of saturated and nearly saturated asymmetrical orthogonal arrays. Ann. Statist. 23 2102–2115. · Zbl 0897.62083 · doi:10.1214/aos/1034713649
[25] Nguyen, N.-K. (1996). An algorithmic approach to constructing supersaturated designs. Technometrics 38 69–73. · Zbl 0900.62416 · doi:10.2307/1268904
[26] Satterthwaite, F. E. (1959). Random balance experimentation. Technometrics 1 111–137.
[27] Tang, B. (2001). Theory of \(J\)-characteristics for fractional factorial designs and projection justification of minimum \(G_2\)-aberration. Biometrika 88 401–407. · Zbl 0984.62053 · doi:10.1093/biomet/88.2.401
[28] Tang, B. and Deng, L.-Y. (1999). Minimum \(G_2\)-aberration for nonregular fractional factorial designs. Ann. Statist. 27 1914–1926. · Zbl 0967.62055 · doi:10.1214/aos/1017939244
[29] Tang, B. and Wu, C. F. J. (1997). A method for constructing supersaturated designs and its \(E (s^2)\) optimality. Canad. J. Statist. 25 191–201. · Zbl 0891.62054 · doi:10.2307/3315731
[30] Wu, C. F. J. (1993). Construction of supersaturated designs through partially aliased interactions. Biometrika 80 661–669. · Zbl 0800.62483 · doi:10.1093/biomet/80.3.661
[31] Wu, C. F. J. and Hamada, M. (2000). Experiments : Planning , Analysis and Parameter Design Optimization . Wiley, New York. · Zbl 0964.62065
[32] Xu, H. (2002). An algorithm for constructing orthogonal and nearly-orthogonal arrays with mixed levels and small runs. Technometrics 44 356–368.
[33] Xu, H. (2003). Minimum moment aberration for nonregular designs and supersaturated designs. Statist. Sinica 13 691–708. · Zbl 1028.62063
[34] Xu, H. and Wu, C. F. J. (2001). Generalized minimum aberration for asymmetrical fractional factorial designs. Ann. Statist. 29 1066–1077. · Zbl 1041.62067 · doi:10.1214/aos/1013699993
[35] Xu, H. and Wu, C. F. J. (2003). Construction of optimal multi-level supersaturated designs. UCLA Statistics Electronic Publications, Preprint 356. Available at preprints.stat.ucla.edu/. · Zbl 1084.62070 · doi:10.1214/009053605000000688
[36] Yamada, S., Ikebe, Y. T., Hashiguchi, H. and Niki, N. (1999). Construction of three-level supersaturated design. J. Statist. Plann. Inference 81 183–193. · Zbl 0939.62083 · doi:10.1016/S0378-3758(99)00007-5
[37] Yamada, S. and Lin, D. K. J. (1999). Three-level supersaturated designs. Statist. Probab. Lett. 45 31–39. · Zbl 0958.62071 · doi:10.1016/S0167-7152(99)00038-3
[38] Yamada, S. and Matsui, T. (2002). Optimality of mixed-level supersaturated designs. J. Statist. Plann. Inference 104 459–468. · Zbl 0992.62069 · doi:10.1016/S0378-3758(01)00248-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.