Pagès, Gilles; Pham, Huyên Optimal quantization methods for nonlinear filtering with discrete-time observations. (English) Zbl 1084.62095 Bernoulli 11, No. 5, 893-932 (2005). Summary: We develop an optimal quantization approach for numerically solving nonlinear filtering problems associated with discrete-time or continuous-time state processes and discrete-time observations. Two quantization methods are discussed: a marginal quantization and a Markovian quantization of the signal process. The approximate filters are explicitly solved by a finite-dimensional forward procedure. A posteriori error bounds are stated, and we show that the approximate error terms are minimal at some specific grids that may be computed off-line by a stochastic gradient method based on Monte Carlo simulations. Some numerical experiments are carried out: the convergence of the approximate filter as the accuracy of the quantization increases and its stability when the latent process is mixing are emphasized. Cited in 1 ReviewCited in 22 Documents MSC: 62M20 Inference from stochastic processes and prediction 60G35 Signal detection and filtering (aspects of stochastic processes) 65C60 Computational problems in statistics (MSC2010) 65C05 Monte Carlo methods 93E11 Filtering in stochastic control theory Keywords:Euler scheme; Markov chain; numerical approximation; stationary signal; stochastic gradient descent; vector quantization × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Bally, V. and Pagès G. (2003) A quantization algorithm for solving multidimensional discrete-time optimal stopping problems. Bernoulli, 9, 1003-1049. · Zbl 1042.60021 · doi:10.3150/bj/1072215199 [2] Bally, V. and Talay, D. (1996) The law of the Euler scheme for stochastic differential equations: II. Approximation of the density. Monte Carlo Methods Appl., 2, 93-128. · Zbl 0866.60049 · doi:10.1515/mcma.1996.2.2.93 [3] Bally, V., Pagès, G. and Printems, J. (2001) A stochastic quantization method for nonlinear problems. Monte Carlo Methods Appl., 7, 21-34. · Zbl 1035.65008 · doi:10.1515/mcma.2001.7.1-2.21 [4] Crisan, D. and Lyons, T. (1997) Nonlinear filtering and measure-valued processes. Probab. Theory Related Fields, 109, 217-244. · Zbl 0888.93056 · doi:10.1007/s004400050131 [5] Del Moral, P. (1998) Measure-valued processes and interacting particle systems, application to nonlinear filtering problem. Ann. Appl. Probab., 8, 438-495. · Zbl 0937.60038 · doi:10.1214/aoap/1028903535 [6] Del Moral, P., Jacod, J. and Protter, P. (2001) The Monte-Carlo method for filtering with discrete-time observations, Probab. Theory Related Fields, 120, 346-368. · Zbl 0979.62072 · doi:10.1007/s004400100128 [7] Devroye, L. (1986) Non-uniform Random Variate Generation. New York: Springer-Verlag. · Zbl 0593.65005 [8] Di Masi, G. and Runggaldier, W. (1982) Approximation and bounds for discrete-time nonlinear filtering, for the nonlinear filtering problem with error bounds. In A. Bensoussan and J.L. Lions (eds), Analysis and Optimization of systems, Lecture Notes in Control and Inform. Sci. 44. Berlin: Springer-Verlag. · Zbl 0546.93069 · doi:10.1007/BFb0044391 [9] Di Masi, G., Pratelli, M. and Runggaldier, W. (1985) An approximation for the nonlinear filtering problem with error bounds. Stochastics, 14, 247-271. · Zbl 0566.60046 · doi:10.1080/17442508508833342 [10] Elliott, R., Aggoun, L. and Moore, J.B. (1995) Hidden Markov Models, Estimation and Control. Berlin: Springer-Verlag. · Zbl 0819.60045 [11] Florchinger, P. and LeGland, F. (1992) Particle Approximation for First-Order SPDÉs. In I. Karatzas and D. Ocone (eds), Applied Stochastic Analysis, Lecture Notes in Control and Inform. Sci. 177, pp. 121-133, Berlin: Springer-Verlag. [12] Graf, S. and Luschgy H. (2000) Foundations of Quantization for Probability Distributions, Lecture Notes in Math. 1730. Berlin: Springer-Verlag. · Zbl 0951.60003 · doi:10.1007/BFb0103945 [13] Kallianpur, G. and Striebel, C. (1968) Arbitrary system process with additive white noise observation errors. Ann. Math. Statist., 39, 785-801. · Zbl 0174.22102 · doi:10.1214/aoms/1177698311 [14] Kushner, H.J. (1977) Probability Methods for Approximations in Stochastic Control and for Elliptic Equations. New York: Academic Press. · Zbl 0547.93076 [15] Newton, N. (2000a) Observations preprocessing and quantisation for nonlinear filters. SIAM J. Control Optim., 38, 482-502. · Zbl 0942.93042 · doi:10.1137/S0363012997331147 [16] Newton, N. (2000b) Observation sampling and quantisation for continuous-time estimators. Stochastic Process. Appl., 87, 311-337. · Zbl 1045.60060 · doi:10.1016/S0304-4149(99)00117-9 [17] Pagès, G. (1997) A space vector quantization method for numerical integration. J. Appl. Comput. Math., 89, 1-38. · Zbl 0908.65012 · doi:10.1016/S0377-0427(97)00190-8 [18] Pagès, G. and Printems, J. (2003) Optimal quadratic quantization for numerics: the Gaussian case. Monte Carlo Methods Appl., 9, 135-166. · Zbl 1029.65012 · doi:10.1515/156939603322663321 [19] Pagès, G., Pham, H. and Printems, J. (2004a) A quantization algorithm for multidimensional stochastic control problems. Stochastics and Dynamics, 4(4), 1-45. · Zbl 1111.65006 · doi:10.1142/S0219493704000882 [20] Pagès, G., Pham, H. and Printems, J. (2004b) Optimal quantization methods and applications to numerical problems in finance. In S.T. Rachev (ed.), Handbook of Computational and Numerical Methods in Finance. Boston: Birkhäuser. · Zbl 1138.91467 [21] Sellami, A. (2004) Non linear filtering with quantization of the observations. Preprint, LPMA. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.