×

zbMATH — the first resource for mathematics

The \(hp\)-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations. (English) Zbl 1084.78007
This paper touchs on an interesting concept: the authors present and analyse a new formulation for low-frequency time-harmonic Maxwell equations based on an \(hp\) local discontinuous Galerkin method.
The mathematical result presented in this paper are correct. I am a little worried only about one point in the paper. The formulation which is derived of the LDG method is presented as a mixed formulation but according to me it is not a mixed formulation.
Therefore, I think that this paper can be published.

MSC:
78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
78A25 Electromagnetic theory (general)
35Q60 PDEs in connection with optics and electromagnetic theory
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ana Alonso, A mathematical justification of the low-frequency heterogeneous time-harmonic Maxwell equations, Math. Models Methods Appl. Sci. 9 (1999), no. 3, 475 – 489. · Zbl 0932.35192
[2] Ana Alonso and Alberto Valli, A domain decomposition approach for heterogeneous time-harmonic Maxwell equations, Comput. Methods Appl. Mech. Engrg. 143 (1997), no. 1-2, 97 – 112. · Zbl 0883.65096
[3] Ana Alonso and Alberto Valli, An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations, Math. Comp. 68 (1999), no. 226, 607 – 631. · Zbl 1043.78554
[4] C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci. 21 (1998), no. 9, 823 – 864 (English, with English and French summaries). , https://doi.org/10.1002/(SICI)1099-1476(199806)21:93.0.CO;2-B · Zbl 0914.35094
[5] Douglas N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), no. 4, 742 – 760. · Zbl 0482.65060
[6] D.N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), 1749-1779. CMP 2002:09
[7] I. Babuška and Manil Suri, The \?-\? version of the finite element method with quasi-uniform meshes, RAIRO Modél. Math. Anal. Numér. 21 (1987), no. 2, 199 – 238 (English, with French summary). · Zbl 0623.65113
[8] Carlos Erik Baumann and J. Tinsley Oden, A discontinuous \?\? finite element method for convection-diffusion problems, Comput. Methods Appl. Mech. Engrg. 175 (1999), no. 3-4, 311 – 341. · Zbl 0924.76051
[9] Anne-Sophie Bonnet-Ben Dhia, Christophe Hazard, and Stephanie Lohrengel, A singular field method for the solution of Maxwell’s equations in polyhedral domains, SIAM J. Appl. Math. 59 (1999), no. 6, 2028 – 2044. · Zbl 0933.78007
[10] A. Bossavit, A rationale for edge-elements in 3D fields computation, IEEE Trans. on Magnetics 24 (1988), 74-79.
[11] Alain Bossavit, Computational electromagnetism, Electromagnetism, Academic Press, Inc., San Diego, CA, 1998. Variational formulations, complementarity, edge elements. · Zbl 0945.78001
[12] A. Bossavit, ”Hybrid” electric-magnetic methods in eddy-current problems, Comput. Methods Appl. Mech. Engrg. 178 (1999), no. 3-4, 383 – 391. · Zbl 1059.78508
[13] C.F. Bryant, C.R.I. Emson, P. Fernandes, and C.W. Trowbridge, Lorentz gauge eddy current formulations for multiply connected piece-wise homogeneous conductors, COMPEL 17 (1998), 732-740. · Zbl 0938.78002
[14] A. Buffa, Hodge decomposition on the boundary of a polyhedron: the nonsimply connected case, Math. Models Methods Appl. Sci. 11 (2001), pp. 1491-1504. · Zbl 1014.58002
[15] A. Buffa and P. Ciarlet Jr., On traces for functional spaces related to Maxwell’s equations. I. An integration by parts formula in Lipschitz polyhedra, Math. Methods Appl. Sci. 24 (2001), no. 1, 9 – 30. , https://doi.org/10.1002/1099-1476(20010110)24:13.0.CO;2-2 · Zbl 0998.46012
[16] A. Buffa and P. Ciarlet Jr., On traces for functional spaces related to Maxwell’s equations. II. Hodge decompositions on the boundary of Lipschitz polyhedra and applications, Math. Methods Appl. Sci. 24 (2001), no. 1, 31 – 48. , https://doi.org/10.1002/1099-1476(20010110)24:13.0.CO;2-2 · Zbl 0976.46023
[17] P. Castillo, Local discontinuous Galerkin methods for convection-diffusion and elliptic problems, Ph.D. thesis, University of Minnesota, Minneapolis, MN, 2001.
[18] P. Castillo, Performance of discontinuous Galerkin methods for elliptic partial differential equations, Tech. Report 1764, IMA, University of Minnesota, 2001.
[19] P. Castillo, B. Cockburn, I. Perugia, and D. Schötzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems, SIAM J. Numer. Anal. 38 (2000), 1676-1706. CMP 2001:08 · Zbl 0987.65111
[20] P. Castillo, B. Cockburn, D. Schötzau, and C. Schwab, Optimal a priori error estimates for the \(hp\)-version of the local discontinuous Galerkin method for convection-diffusion problems, Math. Comp. 71 (2002), 455-478. CMP 2002:09 · Zbl 0997.65111
[21] Zhiming Chen, Qiang Du, and Jun Zou, Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients, SIAM J. Numer. Anal. 37 (2000), no. 5, 1542 – 1570. · Zbl 0964.78017
[22] Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. · Zbl 0383.65058
[23] Bernardo Cockburn and Clint Dawson, Some extensions of the local discontinuous Galerkin method for convection-diffusion equations in multidimensions, The mathematics of finite elements and applications, X, MAFELAP 1999 (Uxbridge), Elsevier, Oxford, 2000, pp. 225 – 238. · Zbl 0960.65107
[24] B. Cockburn, G. Kanschat, I. Perugia, and D. Schötzau, Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids, SIAM J. Numer. Anal. 39 (2001), 264-285. · Zbl 1041.65080
[25] Bernardo Cockburn and Chi-Wang Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal. 35 (1998), no. 6, 2440 – 2463. · Zbl 0927.65118
[26] -, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput. 16 (2001), 173-261. · Zbl 1065.76135
[27] Martin Costabel, Monique Dauge, and Serge Nicaise, Singularities of Maxwell interface problems, M2AN Math. Model. Numer. Anal. 33 (1999), no. 3, 627 – 649. · Zbl 0937.78003
[28] M. Dauge, M. Costabel, and D. Martin, Weighted regularization of Maxwell equations in polyhedral domains, Preprint, University of Rennes, 2001. · Zbl 1019.78009
[29] L. Demkowicz and L. Vardapetyan, Modeling of electromagnetic absorption/scattering problems using \?\?-adaptive finite elements, Comput. Methods Appl. Mech. Engrg. 152 (1998), no. 1-2, 103 – 124. Symposium on Advances in Computational Mechanics, Vol. 5 (Austin, TX, 1997). · Zbl 0994.78011
[30] Paolo Fernandes and Gianni Gilardi, Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions, Math. Models Methods Appl. Sci. 7 (1997), no. 7, 957 – 991. · Zbl 0910.35123
[31] P. Fernandes and I. Perugia, Vector potential formulation for magnetostatics and modelling of permanent magnets, IMA J. Appl. Math. 66 (2001), no. 3, 293 – 318. · Zbl 0985.78005
[32] E.H. Georgoulis and E. Süli, \(hp\)-DGFEM on shape-irregular meshes: reaction-diffusion, Tech. Report NA 01-09, Oxford University Computing Laboratory, 2001.
[33] R. Hiptmair, Symmetric coupling for eddy-current problems, Tech. Report 148, SFB382, Universität Tübingen, 2000. · Zbl 1010.78011
[34] P. Houston, C. Schwab, and E. Süli, Discontinuous \(hp\) finite element methods for advection-diffusion problems, SIAM J. Numer. Anal., to appear. · Zbl 1015.65067
[35] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968 (French). J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 2, Travaux et Recherches Mathématiques, No. 18, Dunod, Paris, 1968 (French). · Zbl 0212.43801
[36] Peter Monk, A finite element method for approximating the time-harmonic Maxwell equations, Numer. Math. 63 (1992), no. 2, 243 – 261. · Zbl 0757.65126
[37] J.-C. Nédélec, Mixed finite elements in \?³, Numer. Math. 35 (1980), no. 3, 315 – 341. · Zbl 0419.65069
[38] J.-C. Nédélec, Éléments finis mixtes incompressibles pour l’équation de Stokes dans \?³, Numer. Math. 39 (1982), no. 1, 97 – 112 (French, with English summary). · Zbl 0488.76038
[39] J. Tinsley Oden, Ivo Babuška, and Carlos Erik Baumann, A discontinuous \?\? finite element method for diffusion problems, J. Comput. Phys. 146 (1998), no. 2, 491 – 519. · Zbl 0926.65109
[40] I. Perugia and D. Schötzau, On the coupling of local discontinuous Galerkin and conforming finite element methods, J. Sci. Comp. (2001), no. 16, 411-433. · Zbl 0995.65117
[41] S. Prudhomme, F. Pascal, J.T. Oden, and A. Romkes, Review of a priori error estimation for discontinuous Galerkin methods, Tech. Report 2000-27, TICAM, University of Texas at Austin, 2000. · Zbl 1007.65084
[42] Béatrice Rivière and Mary F. Wheeler, A discontinuous Galerkin method applied to nonlinear parabolic equations, Discontinuous Galerkin methods (Newport, RI, 1999) Lect. Notes Comput. Sci. Eng., vol. 11, Springer, Berlin, 2000, pp. 231 – 244. · Zbl 0946.65078
[43] Béatrice Rivière, Mary F. Wheeler, and Vivette Girault, Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. I, Comput. Geosci. 3 (1999), no. 3-4, 337 – 360 (2000). · Zbl 0951.65108
[44] Ch. Schwab, \?- and \?\?-finite element methods, Numerical Mathematics and Scientific Computation, The Clarendon Press, Oxford University Press, New York, 1998. Theory and applications in solid and fluid mechanics. · Zbl 0910.73003
[45] L. Demkowicz and L. Vardapetyan, Modeling of electromagnetic absorption/scattering problems using \?\?-adaptive finite elements, Comput. Methods Appl. Mech. Engrg. 152 (1998), no. 1-2, 103 – 124. Symposium on Advances in Computational Mechanics, Vol. 5 (Austin, TX, 1997). · Zbl 0994.78011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.