zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Complex dynamics of Holling type II Lotka--Volterra predator--prey system with impulsive perturbations on the predator. (English) Zbl 1085.34529
The authors consider the so called Holling-type II predator-prey model with logistic term, subjected to an impulsive periodic perturbation that corresponds to punctuated predator in-migration. In the first part of the paper, the authors give conditions for the existence of bounded nontrivial soutions of the perturbed system. In the second part of the paper, a numerical exploration of the system is given, with the forcing amplitude as a parameter. The bifurcation diagram exhibits complex dynamical behaviour characteristic for periodically forced nonlinear oscillators.

MSC:
34C60Qualitative investigation and simulation of models (ODE)
34C15Nonlinear oscillations, coupled oscillators (ODE)
37N25Dynamical systems in biology
34A37Differential equations with impulses
34C23Bifurcation (ODE)
34C28Complex behavior, chaotic systems (ODE)
WorldCat.org
Full Text: DOI
References:
[1] Holling, C. S.: The functional response of predator to prey density and its role in mimicry and population regulation. Mem ent sec can 45, 1-60 (1965)
[2] Komogorov, A.: Sulla teoria di Volterra lotta per l’esistenza. Gi inst ital attuari 7, 74-80 (1936)
[3] Alberecht, F.; Gatzke, H.; Haddad, A.; Wax, N.: The dynamics of two interacting populations. J math anal appl 46, 658-670 (1974) · Zbl 0281.92012
[4] Chen, K.: Uniqueness of a limit cycle for a predator--prey system. SIAM J math anal 12, 541-548 (1981) · Zbl 0471.92021
[5] Cushing, J. M.: Periodic Kolmogorov systems. SIAM J math anal 13, 811-827 (1982) · Zbl 0506.34039
[6] Chen, L.; Jing, Z.: The existence and uniqueness of predator--prey differential equations. Chin sci bull 9, 521-523 (1984)
[7] Huang, X.; Merriu, S. J.: Conditions for uniqueness of limit cycles in general predator--prey systems. Math biosci 96, 47-60 (1989) · Zbl 0676.92008
[8] Cushing, J. M.: Periodic time-dependent predator--prey system. SIAM J appl math 32, 82-95 (1977) · Zbl 0348.34031
[9] Bardi, M.: Predator--prey models in periodically fluctuating environments. J math biol 12, 127-140 (1981) · Zbl 0466.92019
[10] Inoue, M.; Kamifukumoto, H.: Scenarios leading to chaos in forced Lotka--Volterra model. Progr theor phys 71, 930-937 (1984) · Zbl 1074.37522
[11] Levin, R. W.; Cock, B. P.; Markman, G. S.: Periodic, quasiperiodic, and chaotic motion in a forced predator--prey ecosystem. Dynamical systems and environmental models. (1987)
[12] Schaffer, W. M.: Perceiving order in the chaos of nature. Evolution of life histories of mammals. (1988)
[13] Allen, J. C.: Chaos and phase-locking in predator--prey models in relation to functional response. Fla entomol 73, 100-110 (1990)
[14] Doveri, F.; Kuznetsov, Y.; Muratori, S.; Rinaldi, S.; Scheffer, M.: Seasonality and chaos in a plankton-fish model. Theor popul biol 43, 159-183 (1993) · Zbl 0825.92135
[15] Kot, M.; Sayler, G. S.; Schultz, T. W.: Complex dynamics in a model microbial system. Bull math biol 54, 619-648 (1992) · Zbl 0761.92041
[16] Pavlou, S.; Kevrekidis, I. G.: Microbial predation in a periodically operated chemostat: A global study of the interaction between natural and externally imposed frequencies. Math biosci 108, 1-55 (1992) · Zbl 0729.92522
[17] Rinaldi, S.; Muratori, S.: Conditioned chaos in seasonally perturbed predator--prey models. Ecol model 69, 79-97 (1993) · Zbl 0756.92026
[18] Rinaldi, S.; Muratori, S.; Kuznetsov, Y. A.: Multiple, attractors, catastrophes, and chaos in seasonally perturbed predator--prey communities. Bull math biol 55, 15-36 (1993) · Zbl 0756.92026
[19] Sabin, G. C. W.; Summers, D.: Chaos in a periodically forced predator--prey ecosystem model. Math biosci 113, 91-114 (1993) · Zbl 0767.92028
[20] Vandermeer, J.; Stone, L.; Blasius, B.: Categeories of chaos and fractal basin boundaries in forced predator--prey models. Chaos, solitons & fractals 12, 265-276 (2001) · Zbl 0976.92033
[21] Pandit, S. G.: On the stability of impulsively perturbed differential systems. Bull austral math soc 17, 423-432 (1977) · Zbl 0367.34038
[22] Pavidis, T.: Stabling of systems described by differential equations containing impulses. IEEE trans 2, 43-45 (1967)
[23] Simeonov, P. S.; Bainov, D. D.: The second method of Liapunov for systems with impulsive effect. Tamkang J math 16, 19-40 (1985) · Zbl 0641.34051
[24] Simeonov, P. S.; Bainov, D. D.: Stability with respect to part of the variables in systems with impulsive effect. J math anal appl 117, 247-263 (1986) · Zbl 0588.34044
[25] Kulev, G. K.; Bainov, D. D.: On the asymptotic stability of systems with impulses by direct method of Lyapunov. J math anal appl 140, 324-340 (1989) · Zbl 0681.34042
[26] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S.: Theory of impulsive differential equations. (1989) · Zbl 0719.34002
[27] Bainov, D. D.; Simeonov, P. S.: Impulsive differential equations: periodic solutions and applications. (1993) · Zbl 0815.34001
[28] Roberts, M. G.; Kao, R. R.: The dynamics of an infectious disease in a population with birth pulses. Math. biosci 149, 23-36 (1998) · Zbl 0928.92027
[29] Lakmeche, A.; Arino, O.: Bifurcation of non-trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment. Dyn cont discr impulsive syst 7, 265-287 (2000) · Zbl 1011.34031
[30] Cushing, J. M.; Henson, S. M.; Desharnais, R. A.; Dennis, B.; Costantino, R. F.; King, A.: A chaotic attractor in ecology: theory and experimental data. Chaos, solitons & fractals 12, 219-234 (2001) · Zbl 0976.92022
[31] Kendall, B. E.: Cycles, chaos and noise in predator--prey dynamics. Chaos, solitons & fractals 12, 321-332 (2001) · Zbl 0977.92028
[32] Upadhyay, R. K.; Rai, V.: Crisis-limited chaotics in ecological systems. Chaos, solitons & fractals 12, 205-218 (2001) · Zbl 0977.92033
[33] Davies, B.: Exploring chaos, theory and experiment. (1999) · Zbl 0959.37001
[34] May, R. M.: Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos. Science 186, 645-647 (1974)
[35] May, R. M.; Oster, G. F.: Bifurcations and dynamic complexity in simple ecological models. Am nature 110, 573-599 (1976)
[36] Collet, P.; Eeckmann, J. P.: Iterated maps of the interval as dynamical systems. (1980)
[37] Eckmann, J. P.: Routes to chaos with special emphasis on period doubling. Chaotic behavior of deterministic systems (1983) · Zbl 0616.58032
[38] Neubert, M. G.; Caswell, H.: Density-dependent vital rates and their population dynamic consequences. J math biol 41, 103-121 (2000) · Zbl 0956.92029
[39] Wikan, A.: From chaos to chaos. An analysis of a discrete age-structured prey-predator model. J math biol 43, 471-500 (2001) · Zbl 0996.92031
[40] Kaitala, V.; Ylikarjula, J.; Heino, M.: Dynamic complexities in host-parasitioid interaction. J theor biol 197, 331-341 (1999)