×

zbMATH — the first resource for mathematics

Difference operators from interpolating moving least squares and their deviation from optimality. (English) Zbl 1085.39018
The interpolating moving least squares method is constructed to prove a theorem on the derivatives of the Shepard interpolant which is the building block of the method i.e. \({d^j\over dx^j} S_f(x_k)= 0\), \(j= 1,\dots, n-1\) at every node \(x_k\). A link between the first and second derivatives based on a linear and quadratic polynomials basis and finite difference operators has also been established.

MSC:
39A70 Difference operators
65D05 Numerical interpolation
65D25 Numerical differentiation
39A12 Discrete version of topics in analysis
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] T. Belytschko , Y. Krongauz , D. Organ , M. Fleming and P. Krysl , Meshless methods: an overview and recent developments . Comput. Methods Appl. Mech. Engrg. 139 ( 1996 ) 3 - 47 . Zbl 0891.73075 · Zbl 0891.73075 · doi:10.1016/S0045-7825(96)01078-X
[2] J.P. Boyd , Chebyshev and Fourier Spectral Methods . Springer Verlag ( 1989 ). Zbl 0681.65079 · Zbl 0681.65079
[3] B. Fornberg , Generation of Finite Difference Formulas on Arbitrarily Spaced Grids . Math. Comp. 51 ( 1988 ) 699 - 706 . Zbl 0701.65014 · Zbl 0701.65014 · doi:10.2307/2008770
[4] B. Fornberg , A Practical Guide to Pseudospectral Methods . Cambridge University Press ( 1996 ). MR 1386891 | Zbl 0844.65084 · Zbl 0844.65084 · doi:10.1017/CBO9780511626357
[5] J. Fürst and Th. Sonar , On meshless collocation approximations of conservation laws: preliminary investigations on positive schemes and dissipation models . ZAMM Z. Angew. Math. Mech. 81 ( 2001 ) 403 - 415 . Zbl 0985.65123 · Zbl 0985.65123 · doi:10.1002/1521-4001(200106)81:6<403::AID-ZAMM403>3.0.CO;2-T
[6] M. Kunle , Entwicklung und Untersuchung von Moving Least Square Verfahren zur numerischen Simulation hydrodynamischer Gleichungen . Doktorarbeit, Fakultät für Physik, Eberhard-Karls-Universität zu Tübingen ( 2001 ).
[7] P. Lancaster and K. Šalkauskas , Surfaces generated by moving least squares methods . Math. Comp. 37 ( 1981 ) 141 - 158 . Zbl 0469.41005 · Zbl 0469.41005 · doi:10.2307/2007507
[8] P. Lancaster and K. Šalkauskas , Curve and Surface Fitting: An Introduction . Academic Press ( 1986 ). MR 1001969 | Zbl 0649.65012 · Zbl 0649.65012
[9] T. Liszka and J. Orkisz , The finite difference method at arbitrary irregular grids and its application in applied mechanics . Comput. Structures 11 ( 1980 ) 83 - 95 . Zbl 0427.73077 · Zbl 0427.73077 · doi:10.1016/0045-7949(80)90149-2
[10] H. Netuzylov , Th. Sonar and W. Yomsatieankul , Finite difference operators from moving least squares interpolation . Manuscript, Institut Computational Mathematics, TU Braunschweig ( 2004 ).
[11] N. Perrone and R. Kao , A general finite difference method for arbitrary meshes . Comput. Structures 5 ( 1975 ) 45 - 58 .
[12] W. Schönauer , Generation of difference and error formulae of arbitrary consistency order on an unstructured grid . ZAMM Z. Angew. Math. Mech. 78 ( 1998 ) S1061-S1062. Zbl 0925.65175 · Zbl 0925.65175 · doi:10.1002/zamm.19980781599
[13] L. Theilemann , Ein gitterfreies differenzenverfahren . Doktorarbeit, Institut für Aerodynamik und Gasdynamik, Universität Stuttgart ( 1983 ).
[14] W. Yomsatieankul , Th. Sonar and H. Netuzhylov , Spatial difference operators from moving least squares interpolation . Manuscript, Institut Computational Mathematics, TU Braunschweig ( 2004 ).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.