# zbMATH — the first resource for mathematics

The converse of the generalized Hartmann-Wintner theorem. (Russian, English) Zbl 1085.60020
Vestn. Mosk. Univ., Ser. I 2003, No. 6, 56-58 (2003); translation in Mosc. Univ. Math. Bull. 58, No. 6, 37-39 (2003).
The author obtains an analogue of the Strassen theorem [V. Strassen, Z. Wahrscheinlichkeitstheorie Verw. Geb. 4, 265–268 (1966; Zbl 0141.16501)] as follows. Let $$\{X\}_{n=1}^\infty$$ be a sequence of independent similarly distributed random values and the numerical sequence $$\{\varphi(n)\}_{n=1}^\infty$$ $$(0<\varphi(n)\nearrow\infty)$$ satisfies the condition $\liminf_{n\to\infty}\frac{\varphi(n)}{\sqrt{2\text{LL}n}} = 1,\quad \text{LL}n = \log\log\,n.$ Then the correlations $\limsup_{n\to\infty}\frac{S(n)}{\sqrt{n}\varphi(n)} = 1\quad\text{almost sure},\quad \liminf_{n\to\infty}\frac{S(n)}{\sqrt{n}\varphi(n)} = -1\quad\text{almost sure}$ imply that $$\mathbf E X_1 = 0$$, $$\mathbf E X_1^2 = 1.$$
##### MSC:
 60F17 Functional limit theorems; invariance principles 60F05 Central limit and other weak theorems