Cai, T. Tony; Low, Mark G. Nonquadratic estimators of a quadratic functional. (English) Zbl 1085.62055 Ann. Stat. 33, No. 6, 2930-2956 (2005). Summary: Estimation of a quadratic functional over parameter spaces that are not quadratically convex is considered. It is shown, in contrast to the theory for quadratically convex parameter spaces, that optimal quadratic rules are often rate suboptimal. In such cases minimax rate optimal procedures are constructed based on local thresholding. These nonquadratic procedures are sometimes fully efficient even when optimal quadratic rules have slow rates of convergence. Moreover, it is shown that when estimating a quadratic functional, nonquadratic procedures may exhibit different elbow phenomena than quadratic procedures. Cited in 29 Documents MSC: 62G99 Nonparametric inference 62M99 Inference from stochastic processes 46N30 Applications of functional analysis in probability theory and statistics 62F12 Asymptotic properties of parametric estimators 62G07 Density estimation Keywords:Besov balls; Gaussian sequence model; information bound; minimax estimation; quadratic estimators × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Baraud, Y. (2002). Non-asymptotic minimax rates of testing in signal detection. Bernoulli 8 577–606. · Zbl 1007.62042 [2] Bickel, P. J., Klaassen, C. A. J., Ritov, Y. and Wellner, J. A. (1993). Efficient and Adaptive Estimation for Semiparametric Models . Johns Hopkins Univ. Press, Baltimore. · Zbl 0786.62001 [3] Bickel, P. J. and Ritov, Y. (1988). Estimating integrated squared density derivatives: Sharp best order of convergence estimates. Sankhyā Ser. A 50 381–393. · Zbl 0676.62037 [4] Brown, L. D. and Low, M. G. (1996). A constrained risk inequality with applications to nonparametric functional estimation. Ann. Statist. 24 2524–2535. · Zbl 0867.62023 · doi:10.1214/aos/1032181166 [5] Cai, T. T. and Low, M. G. (2004). Minimax estimation of linear functionals over nonconvex parameter spaces. Ann. Statist. 32 552–576. · Zbl 1048.62054 · doi:10.1214/009053604000000094 [6] Cai, T. T. and Low, M. G. (2006). Adaptive confidence balls. Ann. Statist. 34 . · Zbl 1091.62037 · doi:10.1214/009053606000000146 [7] Cai, T. T. and Low, M. G. (2006). Optimal adaptive estimation of a quadratic functional. Ann. Statist. 34 . · Zbl 1110.62048 · doi:10.1214/009053606000000849 [8] Donoho, D. L. and Johnstone, I. M. (1998). Minimax estimation via wavelet shrinkage. Ann. Statist. 26 879–921. · Zbl 0935.62041 · doi:10.1214/aos/1024691081 [9] Donoho, D. L., Johnstone, I. M., Kerkyacharian, G. and Picard, D. (1996). Density estimation by wavelet thresholding. Ann. Statist. 24 508–539. · Zbl 0860.62032 · doi:10.1214/aos/1032894451 [10] Donoho, D. L., Liu, R. C. and MacGibbon, B. (1990). Minimax risk over hyperrectangles, and implications. Ann. Statist. 18 1416–1437. · Zbl 0705.62018 · doi:10.1214/aos/1176347758 [11] Donoho, D. L. and Nussbaum, M. (1990). Minimax quadratic estimation of a quadratic functional. J. Complexity 6 290–323. · Zbl 0724.62039 · doi:10.1016/0885-064X(90)90025-9 [12] Dümbgen, L. (1998). New goodness-of-fit tests and their application to nonparametric confidence sets. Ann. Statist. 26 288–314. · Zbl 0930.62034 · doi:10.1214/aos/1030563987 [13] Efromovich, S. Y. and Low, M. (1996). On optimal adaptive estimation of a quadratic functional. Ann. Statist. 24 1106–1125. · Zbl 0865.62024 · doi:10.1214/aos/1032526959 [14] Genovese, C. R. and Wasserman, L. (2005). Confidence sets for nonparametric wavelet regression. Ann. Statist. 33 698–729. · Zbl 1068.62057 · doi:10.1214/009053605000000011 [15] Fan, J. (1991). On the estimation of quadratic functionals. Ann. Statist. 19 1273–1294. · Zbl 0729.62076 [16] Feller, W. (1968). An Introduction to Probability Theory and Its Applications 1 , 3rd ed. Wiley, New York. · Zbl 0155.23101 [17] Hall, P. and Marron, J. S. (1987). Estimation of integrated squared density derivatives. Statist. Probab. Lett. 6 109–115. · Zbl 0628.62029 · doi:10.1016/0167-7152(87)90083-6 [18] Hasminski, R. Z. and Ibragimov, I. A. (1980). Some estimation problems for stochastic differential equations. Stochastic Differential Systems. Lecture Notes in Control and Inform. Sci. 25 1–12. Springer, Berlin. [19] Ibragimov, I. A., Nemirovskii, A. S. and Hasminski, R. Z. (1986). Some problems on nonparametric estimation in Gaussian white noise. Theory Probab. Appl. 31 391–406. · Zbl 0623.62028 · doi:10.1137/1131054 [20] Ingster, Yu. I. (1993). Asymptotically minimax hypothesis testing for nonparametric alternatives. I–III. Math. Methods Statist. 2 85–114, 171–189, 249–268. · Zbl 0798.62059 [21] Johnstone, I. M. (2001). Chi-square oracle inequalities. In State of the Art in Probability and Statistics (M. de Gunst, C. Klaassen and A. van der Vaart, eds.) 399–418. IMS, Beachwood, OH. · Zbl 1373.62062 [22] Klemelä, J. (2002). Sharp adaptive estimation of quadratic functionals. Technical report, Univ. Heidelberg. · Zbl 1082.62032 [23] Laurent, B. and Massart, P. (2000). Adaptive estimation of a quadratic functional by model selection. Ann. Statist. 28 1302–1338. · Zbl 1105.62328 · doi:10.1214/aos/1015957395 [24] Lepski, O. V. and Spokoiny, V. G. (1999). Minimax nonparametric hypothesis testing: The case of an inhomogeneous alternative. Bernoulli 5 333–358. · Zbl 0946.62050 · doi:10.2307/3318439 [25] Li, K.-C. (1989). Honest confidence regions for nonparametric regression. Ann. Statist. 17 1001–1008. · Zbl 0681.62047 · doi:10.1214/aos/1176347253 [26] Ritov, Y. and Bickel, P. J. (1990). Achieving information bounds in non and semiparametric models. Ann. Statist. 18 925–938. · Zbl 0722.62025 · doi:10.1214/aos/1176347633 [27] Tribouley, K. (2000). Adaptive estimation of integrated functionals. Math. Methods Statist. 9 19–38. · Zbl 1006.62037 [28] Triebel, H. (1992). Theory of Function Spaces 2 . Birkhäuser, Basel. · Zbl 0763.46025 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.