Ling, Shiqing; Tong, Howell Testing for a linear MA model against threshold MA models. (English) Zbl 1085.62102 Ann. Stat. 33, No. 6, 2529-2552 (2005). Summary: This paper investigates the (conditional) quasi-likelihood ratio test for the threshold in moving average (MA) models. Under the hypothesis of no threshold, it is shown that the test statistic converges weakly to a function of the centred Gaussian process. Under local alternatives, it is shown that this test has nontrivial asymptotic power. The results are based on a new weak convergence of a linear marked empirical process, which is independently of interest. This paper also gives an invertible expansion of the threshold MA models. Cited in 1 ReviewCited in 19 Documents MSC: 62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH) 60F05 Central limit and other weak theorems 62F05 Asymptotic properties of parametric tests 62M07 Non-Markovian processes: hypothesis testing 60G10 Stationary stochastic processes Keywords:invertibility; likelihood ratio test; marked empirical process; threshold MA model; simulations × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] An, H. Z. and Chen, S. G. (1997). A note on the ergodicity of non-linear autoregressive model. Statist. Probab. Lett. 34 365–372. · Zbl 0879.62077 · doi:10.1016/S0167-7152(96)00204-0 [2] An, H. Z. and Cheng, B. (1991). A Kolmogorov–Smirnov type statistic with application to test for nonlinearity in time series. Internat. Statist. Rev. 59 287–307. · Zbl 0748.62049 · doi:10.2307/1403689 [3] An, H. Z. and Huang, F. C. (1996). The geometrical ergodicity of nonlinear autoregressive models. Statist. Sinica 6 943–956. · Zbl 0857.62085 [4] Andrews, D. W. K. (1993). Tests for parameter instability and structural change with unknown change point. Econometrica 61 821–856. · Zbl 0795.62012 · doi:10.2307/2951764 [5] Billingsley, P. (1968). Convergence of Probability Measures . Wiley, New York. · Zbl 0172.21201 [6] Brockwell, P., Liu, J. and Tweedie, R. L. (1992). On the existence of stationary threshold autoregressive moving-average processes. J. Time Ser. Anal. 13 95–107. · Zbl 0755.62064 · doi:10.1111/j.1467-9892.1992.tb00096.x [7] Caner, M. and Hansen, B. E. (2001). Threshold autoregression with a unit root. Econometrica 69 1555–1596. · Zbl 1018.62064 · doi:10.1111/1468-0262.00257 [8] Chan, K. S. (1990). Testing for threshold autoregression. Ann. Statist. 18 1886–1894. · Zbl 0711.62074 · doi:10.1214/aos/1176347886 [9] Chan, K. S. (1991). Percentage points of likelihood ratio tests for threshold autoregression. J. Roy. Statist. Soc. Ser. B 53 691–696. · Zbl 0800.62540 [10] Chan, K. S. (1993). Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model. Ann. Statist. 21 520–533. · Zbl 0786.62089 · doi:10.1214/aos/1176349040 [11] Chan, K. S., Petruccelli, J. D., Tong, H. and Woolford, S. W. (1985). A multiple-threshold AR\((1)\) model. J. Appl. Probab. 22 267–279. · Zbl 0579.62074 [12] Chan, K. S. and Tong, H. (1985). On the use of the deterministic Lyapunov function for the ergodicity of stochastic difference equations. Adv. in Appl. Probab. 17 666–678. · Zbl 0573.60056 · doi:10.2307/1427125 [13] Chan, K. S. and Tong, H. (1990). On likelihood ratio tests for threshold autoregression. J. Roy. Statist. Soc. Ser. B 52 469–476. · Zbl 0706.62078 [14] Chan, K. S. and Tsay, R. S. (1998). Limiting properties of the least squares estimator of a continuous threshold autoregressive model. Biometrika 85 413–426. · Zbl 0938.62089 · doi:10.1093/biomet/85.2.413 [15] Chen, R. and Tsay, R. S. (1991). On the ergodicity of \(\mathrm TAR(1)\) processes. Ann. Appl. Probab. 1 613–634. · Zbl 0795.93099 · doi:10.1214/aoap/1177005841 [16] de Gooijer, J. G. (1998). On threshold moving-average models. J. Time Ser. Anal. 19 1–18. · Zbl 0902.62103 · doi:10.1111/1467-9892.00074 [17] Hansen, B. E. (1996). Inference when a nuisance parameter is not identified under the null hypothesis. Econometrica 64 413–430. · Zbl 0862.62090 · doi:10.2307/2171789 [18] Hansen, B. E. (2000). Sample splitting and threshold estimation. Econometrica 68 575–603. · Zbl 1056.62528 · doi:10.1111/1468-0262.00124 [19] Koul, H. L. (2000). Fitting a two phase linear regression model. J. Indian Statist. Assoc. 38 331–353. [20] Koul, H. L., Qian, L. and Surgailis, D. (2003). Asymptotics of \(M\)-estimators in two-phase linear regression models. Stochastic Process. Appl. 103 123–154. · Zbl 1075.62021 · doi:10.1016/S0304-4149(02)00185-0 [21] Koul, H. L. and Schick, A. (1997). Efficient estimation in nonlinear autoregressive time-series models. Bernoulli 3 247–277. · Zbl 1066.62537 · doi:10.2307/3318592 [22] Koul, H. L. and Stute, W. (1999). Nonparametric model checks for time series. Ann. Statist. 27 204–236. · Zbl 0955.62089 · doi:10.1214/aos/1018031108 [23] Ling, S. (1999). On the probabilistic properties of a double threshold ARMA conditional heteroskedastic model. J. Appl. Probab. 36 688–705. · Zbl 1109.62340 · doi:10.1239/jap/1032374627 [24] Ling, S. (2003). Weak convergence for marked empirical processes of stationary sequences and goodness-of-fit tests for time series models. Working paper, Dept. Mathematics, Hong Kong Univ. Science and Technology. [25] Ling, S. and McAleer, M. (2003). On adaptive estimation in nonstationary ARMA models with GARCH errors. Ann. Statist. 31 642–676. · Zbl 1039.62084 · doi:10.1214/aos/1051027884 [26] Liu, J., Li, W. K. and Li, C. W. (1997). On a threshold autoregression with conditional heteroscedastic variances. J. Statist. Plann. Inference 62 279–300. · Zbl 0921.62113 · doi:10.1016/S0378-3758(96)00196-6 [27] Liu, J. and Susko, E. (1992). On strict stationarity and ergodicity of a nonlinear ARMA model. J. Appl. Probab. 29 363–373. · Zbl 0753.62059 · doi:10.2307/3214573 [28] Qian, L. (1998). On maximum likelihood estimators for a threshold autoregression. J. Statist. Plann. Inference 75 21–46. · Zbl 0953.62098 · doi:10.1016/S0378-3758(98)00113-X [29] Stute, W. (1997). Nonparametric model checks for regression. Ann. Statist. 25 613–641. · Zbl 0926.62035 · doi:10.1214/aos/1031833666 [30] Tong, H. (1978). On a threshold model. In Pattern Recognition and Signal Processing (C. H. Chen, ed.) 101–141. Sijthoff and Noordhoff, Amsterdam. [31] Tong, H. (1990). Non-linear Time Series. A Dynamical System Approach . Clarendon Press, Oxford. · Zbl 0716.62085 [32] Tsay, R. S. (1987). Conditional heteroscedastic time series models. J. Amer. Statist. Assoc. 82 590–604. · Zbl 0636.62092 · doi:10.2307/2289470 [33] Tsay, R. S. (1989). Testing and modeling threshold autoregressive processes. J. Amer. Statist. Assoc. 84 231–240. · Zbl 0683.62050 · doi:10.2307/2289868 [34] Tsay, R. S. (1998). Testing and modeling multivariate threshold models. J. Amer. Statist. Assoc. 93 1188–1202. · Zbl 1063.62578 · doi:10.2307/2669861 [35] Wong, C. S. and Li, W. K. (1997). Testing for threshold autoregression with conditional heteroscedasticity. Biometrika 84 407–418. · Zbl 1058.62554 · doi:10.1093/biomet/84.2.407 [36] Wong, C. S. and Li, W. K. (2000). Testing for double threshold autoregressive conditional heteroscedastic model. Statist. Sinica 10 173–189. · Zbl 0970.62059 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.