zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A splitting method using discontinuous Galerkin for the transient incompressible Navier-Stokes equations. (English) Zbl 1085.76037
Summary: We solve time-dependent incompressible Navier-Stokes equations by splitting the non-linearity and incompressibility, and using discontinuous or continuous finite element methods in space. We prove optimal error estimates for the velocity and suboptimal estimates for the pressure. We present some numerical experiments.

MSC:
76M10Finite element methods (fluid mechanics)
76D05Navier-Stokes equations (fluid dynamics)
65M15Error bounds (IVP of PDE)
65M60Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (IVP of PDE)
WorldCat.org
Full Text: DOI Numdam EuDML
References:
[1] R.A. Adams , Sobolev Spaces . Academic Press, New York ( 1975 ). MR 450957 | Zbl 0314.46030 · Zbl 0314.46030
[2] A.S. Almgren , J.B. Bell , P. Colella , L.H. Howell and M.L. Welcome , A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations . Technical Report LNBL-39075, UC- 405 ( 1996 ). Zbl 0933.76055 · Zbl 0933.76055 · doi:10.1006/jcph.1998.5890
[3] C.E. Baumann and J.T. Oden , A discontinuous hp finite element method for convection-diffusion problems . Comput. Methods Appl. Mech. Engrg. 175 ( 1999 ) 311 - 341 . Zbl 0924.76051 · Zbl 0924.76051 · doi:10.1016/S0045-7825(98)00359-4
[4] J. Blasco and R. Codina , Error estimates for an operator-splitting method for incompressible flows . Appl. Numer. Math. 51 ( 2004 ) 1 - 17 . Zbl 1126.76339 · Zbl 1126.76339 · doi:10.1016/j.apnum.2004.02.004
[5] J. Blasco , R. Codina and A. Huerta , A fractional-step method for the incompressible Navier-Stokes equations related to a predictor-multicorrector algorithm . Int. J. Numer. Meth. Fl. 28 ( 1997 ) 1391 - 1419 . Zbl 0935.76041 · Zbl 0935.76041 · doi:10.1002/(SICI)1097-0363(19981230)28:10<1391::AID-FLD699>3.0.CO;2-5
[6] P.G. Ciarlet , The finite element methods for elliptic problems . North-Holland, Amsterdam ( 1978 ). MR 1115235 | Zbl 0999.65129 · Zbl 0999.65129
[7] A.J. Chorin , Numerical solution of the Navier-Stokes equations . Math. Comp. 22 ( 1968 ) 745 - 762 . Zbl 0198.50103 · Zbl 0198.50103 · doi:10.2307/2004575
[8] M. Crouzeix and P.A. Raviart , Conforming and non conforming finite element methods for solving the stationary Stokes equations . RAIRO Anal. Numér. R 3 ( 1973 ) 33 - 76 . Numdam | Zbl 0302.65087 · Zbl 0302.65087 · eudml:193250
[9] C. Dawson and J .Proft, Discontinuous and coupled continuous/discontinuous Galerkin methods for the shallow water equations. Comput. Methods Appl. Mech. Engrg. 191 (2002) 4721-4746. Zbl 1015.76046 · Zbl 1015.76046 · doi:10.1016/S0045-7825(02)00402-4
[10] C. Dawson , S. Sun and M. Wheeler , Compatible algorithms for coupled flow and transport . Comput. Methods Appl. Mech. Engrg. ( 2003 ) 2565 - 2580 . Zbl 1067.76565 · Zbl 1067.76565 · doi:10.1016/j.cma.2003.12.059
[11] E. Fernandez-Cara and M.M. Beltram , The convergence of two numerical schemes for the Navier-Stokes equations . Numer. Math. 55 ( 1989 ) 33 - 60 . Article | Zbl 0645.76032 · Zbl 0645.76032 · doi:10.1007/BF01395871 · eudml:133343
[12] V. Girault and J.-L. Lions , Two-grid finite-element schemes for the steady Navier-Stokes problem in polyhedra . Portugal. Math. 58 ( 2001 ) 25 - 57 . Zbl 0997.76043 · Zbl 0997.76043 · eudml:49511
[13] V. Girault and P.A. Raviart , Finite element methods for Navier-Stokes equations . Lecture Notes in Math. 749, Springer-Verlag, Berlin, Heidelberg, New-York ( 1979 ). MR 851383 | Zbl 0413.65081 · Zbl 0413.65081 · doi:10.1007/BFb0063447
[14] V. Girault , B. Rivière and M.F. Wheeler , A discontinuous Galerkin method with non-overlapping domain decomposition for the Stokes and Navier-Stokes problems . Math. Comp. 74 ( 2005 ) 53 - 84 . Zbl 1057.35029 · Zbl 1057.35029 · doi:10.1090/S0025-5718-04-01652-7
[15] R. Glowinski , Finite element methods for Incompressible Viscous Flows , in Numerical Methods for Fluids (Part 3), Handbook of Numerical Analysis, 9, Elsevier, North-Holland ( 2003 ). MR 2009826 | Zbl 1040.76001 · Zbl 1040.76001
[16] P. Grisvard , Elliptic problems in nonsmooth domains , Pitman Monogr. Studies Pure Appl. Math. 24, Pitman, Boston, MA ( 1985 ). MR 775683 | Zbl 0695.35060 · Zbl 0695.35060
[17] J.L. Guermond and L. Quartapelle , On the approximation of the unsteady Navier-Stokes equations by finite element projection methods . Numer. Math. 80 ( 1998 ) 207 - 238 . Zbl 0914.76051 · Zbl 0914.76051 · doi:10.1007/s002110050366
[18] J.L. Guermond and J. Shen , Velocity-correction projection methods for incompressible flows . SIAM J. Numer. Anal. 41 ( 2003 ) 112 - 134 . Zbl 1130.76395 · Zbl 1130.76395 · doi:10.1137/S0036142901395400
[19] J.L. Guermond and J. Shen , A new class of truly consistent splitting schemes for incompressible flows . J. Comput. Phys. 192 ( 2003 ) 262 - 276 . Zbl 1032.76529 · Zbl 1032.76529 · doi:10.1016/j.jcp.2003.07.009
[20] S. Kaya and B. Rivière , A discontinuous subgrid eddy viscosity method for the time-dependent Navier-Stokes equations . SIAM J. Numer. Anal. ( 2005 ), to appear. MR 2182140 | Zbl 1096.76026 · Zbl 1096.76026 · doi:10.1137/S0036142903434862
[21] P. Lesaint and P.A. Raviart , On a finite element method for solving the neutron transport equation , in Mathematical Aspects of Finite Element Methods in Partial Differential Equations, C.A. de Boor Ed., Academic Press ( 1974 ) 89 - 123 . Zbl 0341.65076 · Zbl 0341.65076
[22] J.-L. Lions and E. Magenes , Problèmes aux Limites non Homogènes et Applications, I . Dunod, Paris ( 1968 ). Zbl 0165.10801 · Zbl 0165.10801
[23] J.-L. Lions , Quelques méthodes de résolution des problèmes aux limites non linéaires . Dunod, Paris ( 1969 ). MR 259693 | Zbl 0189.40603 · Zbl 0189.40603
[24] A. Quarteroni , F. Saleri and A. Veneziani , Factorization methods for the numerical approximation of Navier-Stokes equations . Comput. Methods Appl. Mech. Engrg. 188 ( 2000 ) 505 - 526 . Zbl 0976.76044 · Zbl 0976.76044 · doi:10.1016/S0045-7825(99)00192-9
[25] R. Rannacher , On Chorin’s projection method for the incompressible Navier-Stokes equations , Navier-Stokes equations: Theory and Numerical Methods, R. Rautmann et al. Eds., Springer ( 1992 ). Zbl 0769.76053 · Zbl 0769.76053
[26] B. Rivière , M.F. Wheeler and V. Girault , Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems . Part I. Comput. Geosci. 3 ( 1999 ) 337 - 360 . Zbl 0951.65108 · Zbl 0951.65108 · doi:10.1023/A:1011591328604
[27] R. Temam , Sur l’approximation de la solution des equations de Navier-Stokes par la méthode des pas fractionnaires (I), (II). Arch. Rational Mech. Anal. 33 ( 1969 ) 377 - 385 . Zbl 0207.16904 · Zbl 0207.16904 · doi:10.1007/BF00247696
[28] R. Temam , Navier-Stokes equations . Theory and numerical analysis. North-Holland, Amsterdam ( 1979 ). MR 603444 | Zbl 0426.35003 · Zbl 0426.35003
[29] S. Turek , On discrete projection methods for the incompressible Navier-Stokes equations: an algorithmic approach . Comput. Methods Appl. Mech. Engrg. 143 ( 1997 ) 271 - 288 . Zbl 0898.76069 · Zbl 0898.76069 · doi:10.1016/S0045-7825(96)01155-3
[30] M.F. Wheeler , An elliptic collocation-finite element method with interior penalties . SIAM J. Numer. Anal. 15 ( 1978 ) 152 - 161 . Zbl 0384.65058 · Zbl 0384.65058 · doi:10.1137/0715010
[31] N.N. Yanenko , The method of fractional steps . The solution of problems of mathematical physics in several variables. Springer-Verlag, New York ( 1971 ). MR 307493 | Zbl 0209.47103 · Zbl 0209.47103