zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Implicit for local effects and explicit for nonlocal effects is unconditionally stable. (English) Zbl 1085.76046
Summary: A combination of implicit and explicit timestepping is analyzed for a system of ODEs motivated by ones arising from spatial discretizations of evolutionary partial differential equations. Loosely speaking, the method we consider is implicit in local and stabilizing terms in the underlying PDE and explicit in nonlocal and unstabilizing terms. Unconditional stability and convergence of the numerical scheme are proved by the energy method and by algebraic techniques. This stability result is surprising because usually, when different methods are combined, the stability properties of the least stable method plays a determining role in the combination.

76M20Finite difference methods (fluid mechanics)
76R99Diffusion and convection (fluid mechanics)
65M12Stability and convergence of numerical methods (IVP of PDE)
65L07Numerical investigation of stability of solutions of ODE
Full Text: EMIS EuDML arXiv