zbMATH — the first resource for mathematics

Tensor products of sequential effect algebras. (English) Zbl 1086.03053
Summary: A sequential effect algebra (SEA) is an effect algebra on which a sequential product with natural properties is defined. It is first shown that the tensor product of a Boolean algebra with an arbitrary SEA exists. We then characterize pairs of SEA’s that admit a tensor product. As a corollary we show that a pair of commutative SEA’s admit a tensor product if they admit a bimorphism.

03G12 Quantum logic
81P10 Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects)
Full Text: EuDML
[1] BENNETT M. K.-FOULIS D. J.: Interval and scale effect algebras. Adv. Appl. Math. 91 (1997), 200-215. · Zbl 0883.03048
[2] BUSCH P.-LAHTI P. J.-MIDDLESTAEDT P.: The Quantum Theory of Measurements. Springer-Verlag, Berlin, 1991.
[3] BUSCH P.-GRABOWSKI M.-LAHTI P. J.: Operational Quantum Physics. Springer-Verlag, Berlin, 1995. · Zbl 0863.60106
[4] DVUREČENSKIJ A.: Tensor product of difference posets. Trans. Amer. Math. Soc. 347 (1995), 1043-1057. · Zbl 0859.03031
[5] DVUREČENSKIJ A.-PULMANNOVÁ S.: New Trends in Quantum Structures. Kluwer, Dordrecht, 2000. · Zbl 0987.81005
[6] FOULIS D. J.-BENNETT M. K.: Tensor products of orthoalgebras. Order 10 (1993), 271-282. · Zbl 0798.06015
[7] FOULIS D. J.-BENNETT M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325-1346. · Zbl 1213.06004
[8] GIUNTINI R.-GREULING H.: Toward a formal language for unsharp properties. Found. Phys. 19 (1989), 931-945.
[9] GUDDER S.: A histories approach to quantum mechanics. J. Math. Phys. 39 (1998), 5772-5788. · Zbl 0935.81005
[10] GUDDER S.-GREECHIE R.: Effect algebra counterexamples. Math. Slovaca 46 (1996), 317-325. · Zbl 0890.03035
[11] GUDDER S.-GREECHIE R.: Sequential products on effect algebras. Rep. Math. Phys. 49 (2002), 87-111. · Zbl 1023.81001
[12] GUDDER S.-GREECHIE R.: Uniqueness and order in sequential effect algebras. Internat. J. Theoret. Phys. · Zbl 1104.81018
[13] GUDDER S.-NAGY G.: Sequentially independent effects. Proc. Amer. Math. Soc. 130 (2001), 1125-1130. · Zbl 1016.47020
[14] GUDDER S.-NAGY G.: Sequential quantum measurements. J. Math. Phys. 42 (2001), 5212-5222. · Zbl 1018.81005
[15] KÔPKA F.-CHOVANEC F.: \(D\)-Posets. Math. Slovaca 44 (1994), 21-34. · Zbl 0789.03048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.