Voronov, Theodore Higher derived brackets and homotopy algebras. (English) Zbl 1086.17012 J. Pure Appl. Algebra 202, No. 1-3, 133-153 (2005). Here is a rather general algebraic construction producing strong homotopy Lie algebras from simple data: a Lie algebra with a projector on an abelian subalgebra satisfying a condition on commutators and an odd element \(\Delta\).Then we have an infinity sequence of higher brackets on the image of the projector and an explicit calculation of their jacobiators in terms of \(\Delta^2\).The main result has nice examples and applications: generalization of classical Poisson-Schouten structures, Stasheff strongly homotopy Lie algebras, variants of homotopy Batalin-Vilkovsky algebras (which appears in the physical string theory).Links with other structures and perspectives for further studies are also discussed. Reviewer: Georges Hoff (Villetaneuse) Cited in 6 ReviewsCited in 141 Documents MSC: 17B55 Homological methods in Lie (super)algebras 18G55 Nonabelian homotopical algebra (MSC2010) 58C50 Analysis on supermanifolds or graded manifolds Keywords:homotopy algebras; higher brackets; jacobiators × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Akman, F., On some generalizations of Batalin-Vilkovisky algebras, J. Pure Appl. Algebra, 120, 2, 105-141 (1997) · Zbl 0885.17020 [2] Akman, F., A master identity for homotopy Gerstenhaber algebras, Comm. Math. Phys., 209, 1, 51-76 (2000) · Zbl 0951.55019 [3] Alfaro, J.; Damgaard, P. H., Non-abelian antibrackets, Phys. Lett. B, 369, 3-4, 289-294 (1996) [4] Batalin, I. A.; Bering, K.; Damgaard, P. H., Gauge independence of the Lagrangian path integral in a higher-order formalism, Phys. Lett. B, 389, 4, 673-676 (1996) [5] Batalin, I. A.; Marnelius, R., Quantum antibrackets, Phys. Lett. B, 434, 3-4, 312-320 (1998) · Zbl 0970.81081 [6] Batalin, I. A.; Marnelius, R., Open groups of constraints. Integrating arbitrary involutions, Phys. Lett. B, 441, 1-4, 243-249 (1998) [7] Batalin, I. A.; Marnelius, R., Dualities between Poisson brackets and antibrackets, Internat. J. Modern Phys. A, 14, 32, 5049-5073 (1999) · Zbl 1125.81306 [8] Batalin, I. A.; Marnelius, R., General quantum antibrackets, Teoret. Mat. Fiz., 120, 3, 358-379 (1999) · Zbl 0970.81081 [9] Bering, K.; Damgaard, P. H.; Alfaro, J., Algebra of higher antibrackets, Nuclear Phys. B, 478, 1-2, 459-503 (1996) · Zbl 0925.81398 [10] A. Grothendieck, Éléments de géométrie algébrique. IV, Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. (32) (1967) 361.; A. Grothendieck, Éléments de géométrie algébrique. IV, Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. (32) (1967) 361. · Zbl 0153.22301 [11] O.[H.]M. Khudaverdian, Geometry of superspace with even and odd brackets, preprint of the Geneva University, UGVA-DPT 1989/05-613, published in: J. Math. Phys. 32 (1991) 1934-1937.; O.[H.]M. Khudaverdian, Geometry of superspace with even and odd brackets, preprint of the Geneva University, UGVA-DPT 1989/05-613, published in: J. Math. Phys. 32 (1991) 1934-1937. · Zbl 0737.58063 [12] O.[H.]M. Khudaverdian, Algebras with operator and Campbell-Hausdorff formula, Lett. Math. Phys. 35 (1) (1995) 27-38,; O.[H.]M. Khudaverdian, Algebras with operator and Campbell-Hausdorff formula, Lett. Math. Phys. 35 (1) (1995) 27-38, · Zbl 0833.22026 [13] O.[H.]M. Khudaverdian, \( \operatorname{\Delta;} \); O.[H.]M. Khudaverdian, \( \operatorname{\Delta;} \) [14] H.M. Khudaverdian, Laplacians in odd symplectic geometry, in: Th. Voronov (Ed.), Quantization, Poisson Brackets and Beyond, Contemporary Mathematics, vol. 315, Amer. Math. Soc., Providence, RI, 2002, pp. 199-212,; H.M. Khudaverdian, Laplacians in odd symplectic geometry, in: Th. Voronov (Ed.), Quantization, Poisson Brackets and Beyond, Contemporary Mathematics, vol. 315, Amer. Math. Soc., Providence, RI, 2002, pp. 199-212, · Zbl 1047.53049 [15] Khudaverdian, H. M., Semidensities on odd symplectic supermanifolds, Comm. Math. Phys., 247, 2, 353-390 (2004) · Zbl 1057.58002 [16] Khudaverdian, H. M.; Voronov, Th., On odd Laplace operators, Lett. Math. Phys., 62, 127-142 (2002) · Zbl 1044.58042 [17] H.M. Khudaverdian, Th. Voronov, On odd Laplace operators. II, in: V.M. Buchstaber, I.M. Krichever (Eds.), Geometry, Topology and Mathematical Physics. S. P. Novikov’s seminar: 2002-2003, Amer. Math. Soc. Transl. (2), vol. 212, Amer. Math. Soc., Providence, RI, 2004, pp. 179-205,; H.M. Khudaverdian, Th. Voronov, On odd Laplace operators. II, in: V.M. Buchstaber, I.M. Krichever (Eds.), Geometry, Topology and Mathematical Physics. S. P. Novikov’s seminar: 2002-2003, Amer. Math. Soc. Transl. (2), vol. 212, Amer. Math. Soc., Providence, RI, 2004, pp. 179-205, · Zbl 1075.58018 [18] Khudaverdian, H. M.; Voronov, Th. Th., Geometry of differential operators, and odd Laplace operators, Russian Math. Surveys, 58, 197-198 (2003) · Zbl 1064.58021 [19] Kjeseth, L., A homotopy Lie-Rinehart resolution and classical BRST cohomology, Homol. Homotopy Appl., 3, 1, 165-192 (2001), (electronic) · Zbl 1054.17016 [20] Kosmann-Schwarzbach, Y., From Poisson algebras to Gerstenhaber algebras, Ann. Inst. Fourier Grenoble, 46, 1243-1274 (1996) · Zbl 0858.17027 [21] Kosmann-Schwarzbach, Y.; Monterde, J., Divergence operators and odd Poisson brackets, Ann. Inst. Fourier, 52, 419-456 (2002) · Zbl 1054.53094 [22] J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie (1985) 257-271 Astérisque (Numero Hors Serie) (The Mathematical Heritage of Élie Cartan (Lyon, 1984);).; J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie (1985) 257-271 Astérisque (Numero Hors Serie) (The Mathematical Heritage of Élie Cartan (Lyon, 1984);). · Zbl 0615.58029 [23] O. Kravchenko, Deformations of Batalin-Vilkovisky algebras, in: Poisson Geometry (Warsaw, 1998), Banach Center Publ., vol. 51, Polish Acad. Sci., Warsaw, 2000, pp. 131-139,; O. Kravchenko, Deformations of Batalin-Vilkovisky algebras, in: Poisson Geometry (Warsaw, 1998), Banach Center Publ., vol. 51, Polish Acad. Sci., Warsaw, 2000, pp. 131-139, · Zbl 1015.17029 [24] Lada, T.; Markl, M., Strongly homotopy Lie algebras, Comm. Algebra, 23, 6, 2147-2161 (1995) · Zbl 0999.17019 [25] Lada, T.; Stasheff, J., Introduction to SH Lie algebras for physicists, Internat. J. Theoret. Phys., 32, 7, 1087-1103 (1993) · Zbl 0824.17024 [26] Markl, M.; Shnider, S.; Stasheff, J., Operads in algebra, topology and physics, (Mathematical Surveys and Monographs, vol. 96 (2002), American Mathematical Society: American Mathematical Society Providence, RI) · Zbl 1017.18001 [27] Retakh, V. S., Lie-Massey brackets and \(n\)-homotopically multiplicative maps of differential graded Lie algebras, J. Pure Appl. Algebra, 89, 1-2, 217-229 (1993) · Zbl 0781.17013 [28] D. Roytenberg, Courant algebroids, derived brackets and even symplectic supermanifolds, Ph.D. Thesis, UC Berkeley, 1999,; D. Roytenberg, Courant algebroids, derived brackets and even symplectic supermanifolds, Ph.D. Thesis, UC Berkeley, 1999, [29] D. Roytenberg, On the structure of graded symplectic supermanifolds and Courant algebroids, in: Th. Voronov (Ed.), Quantization, Poisson Brackets and Beyond, Contemporary Mathematics, vol. 315, Amer. Math. Soc., Providence, RI, 2002, pp. 169-186,; D. Roytenberg, On the structure of graded symplectic supermanifolds and Courant algebroids, in: Th. Voronov (Ed.), Quantization, Poisson Brackets and Beyond, Contemporary Mathematics, vol. 315, Amer. Math. Soc., Providence, RI, 2002, pp. 169-186, · Zbl 1036.53057 [30] Roytenberg, D.; Weinstein, A., Courant algebroids and strongly homotopy Lie algebras, Lett. Math. Phys., 46, 1, 81-93 (1998), . · Zbl 0946.17006 [31] Schlessinger, M.; Stasheff, J., The Lie algebra structure of tangent cohomology and deformation theory, J. Pure Appl. Algebra, 38, 2-3, 313-322 (1985) · Zbl 0576.17008 [32] Schwarz, A. S., Geometry of Batalin-Vilkovisky quantization, Comm. Math. Phys., 155, 2, 249-260 (1993) · Zbl 0786.58017 [33] Tamarkin, D.; Tsygan, B., Noncommutative differential calculus, homotopy BV algebras and formality conjectures, Methods Funct. Anal. Topol., 6, 2, 85-100 (2000) · Zbl 0965.58010 [34] A.A. Voronov, Homotopy Gerstenhaber algebras, in: Conférence Moshé Flato 1999, Vol. II (Dijon), Mathematical Physics Studies, vol. 22, Kluwer Acad. Publ., Dordrecht, 2000, pp. 307-331,; A.A. Voronov, Homotopy Gerstenhaber algebras, in: Conférence Moshé Flato 1999, Vol. II (Dijon), Mathematical Physics Studies, vol. 22, Kluwer Acad. Publ., Dordrecht, 2000, pp. 307-331, · Zbl 0974.16005 [35] Th. Voronov, Graded manifolds and Drinfeld doubles for Lie bialgebroids, in: Th. Voronov (Ed.), Quantization, Poisson Brackets and Beyond, Contemporary Mathematics, vol. 315, Amer. Math. Soc., Providence, RI, 2002, pp. 131-168,; Th. Voronov, Graded manifolds and Drinfeld doubles for Lie bialgebroids, in: Th. Voronov (Ed.), Quantization, Poisson Brackets and Beyond, Contemporary Mathematics, vol. 315, Amer. Math. Soc., Providence, RI, 2002, pp. 131-168, · Zbl 1042.53056 [36] Th. Voronov, Higher derived brackets for not necessarily inner derivations. To appear in: Travaux Mathématiques; Th. Voronov, Higher derived brackets for not necessarily inner derivations. To appear in: Travaux Mathématiques [37] Zwiebach, B., Closed string field theory: quantum action and the Batalin-Vilkovisky master equation, Nuclear Phys. B, 390, 1, 33-152 (1993) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.