Hakl, R.; Lomtatidze, A.; Šremr, J. On an antiperiodic type boundary-value problem for first-order nonlinear functional-differential equations of non-Volterra’s type. (English) Zbl 1086.34536 Nelinijni Kolyvannya 6, No. 4, 550-573 (2003). The authors present sufficient conditions for solvability and unique solvability of the boundary value problem \[ u'(t) = F(u)(t),\qquad u(a) +\lambda u(b) = h(u), \] where \(F\: C([a,b];\mathbb{R})\to L([a,b];\mathbb{R})\) is a continuous operator satisfying the Carathéodory conditions, \(h\: C([a,b];\mathbb{R})\to \mathbb{R}\) is a continuous functional, and \(\lambda\in \mathbb{R}_+\). Some illustrative examples are given. Reviewer: Julia A. Martynyuk (Kyïv) Cited in 1 Document MSC: 34K10 Boundary value problems for functional-differential equations Keywords:continuous operator; Carathéodory conditions; solvability of boundary value problem PDF BibTeX XML Cite \textit{R. Hakl} et al., Neliniĭni Kolyvannya 6, No. 4, 550--573 (2003; Zbl 1086.34536) Full Text: DOI