[1] |
Cole, J. D.: Perturbation methods in applied mathematics. (1968) · Zbl 0162.12602 |

[2] |
Nayfeh, Ali Hasan: Perturbation methods. (2000) · Zbl 0995.35001 |

[3] |
Lyapunov, A. M.: General problem on stability of motion (English translation). (1992) · Zbl 0786.70001 |

[4] |
Karmishin, A. V.; Zhukov, A. I.; Kolosov, V. G.: Methods of dynamics calculation and testing for thin-walled structures. (1990) |

[5] |
Adomian, G.: Solving frontier problems of physics: the decomposition method. (1994) · Zbl 0802.65122 |

[6] |
S.J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, PhD thesis, Shanghai Jiao Tong University, 1992 |

[7] |
Liao, S. J.: An explicit, totally analytic approximation of Blasius viscous flow problems. Int. J. Non-linear mech. 34, No. 4, 759-778 (1999) · Zbl 05137896 |

[8] |
Liao, S. J.: A simple way to enlarge the convergence region of perturbation approximations. Int. J. Non-linear dynam. 19, No. 2, 93-110 (1999) · Zbl 0949.70003 |

[9] |
Liao, S. J.: A uniformly valid analytic solution of 2D viscous flow past a semi-infinite flat plate. J. fluid mech. 385, 101-128 (1999) · Zbl 0931.76017 |

[10] |
Liao, S. J.; Campo, A.: Analytic solutions of the temperature distribution in Blasius viscous flow problems. J. fluid mech. 453, 411-425 (2002) · Zbl 1007.76014 |

[11] |
Liao, S. J.: An analytic approximation of the drag coefficient for the viscous flow past a sphere. Int. J. Non-linear mech. 37, 1-18 (2002) · Zbl 1116.76335 |

[12] |
Liao, S. J.: An explict analytic solution to the Thomas--Fermi equation. Appl. math. Comput. 144, 433-444 (2003) |

[13] |
S.J. Liao, K.F. Cheung, Analytic solution for nonlinear progressive waves in deep water, J. Engrg. Math., in press · Zbl 1112.76316 |

[14] |
Kuiken, H. K.: On boundary layers in fluid mechanics that decay algebraically along stretches of wall that are not vanishingly small. IMA J. Appl. math. 27, 387-405 (1981) · Zbl 0472.76045 |