zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global synchronization criterion and adaptive synchronization for new chaotic system. (English) Zbl 1086.37512
Summary: This paper proposes two schemes of synchronization of two four-scroll chaotic attractor, a simple global synchronization and adaptive synchronization in the presence of unknown system parameters. Based on Lyapunov stability theory and matrix measure, a simple generic criterion is derived for global synchronization of four-scroll chaotic attractor system with a unidirectional linear error feedback coupling. These methods are applicable to a large class of chaotic systems where only a few algebraic inequalities are involved. Numerical simulations are presented to show the effectiveness of the proposed chaos synchronization method.

MSC:
37D45Strange attractors, chaotic dynamics
93D21Adaptive or robust stabilization
93D15Stabilization of systems by feedback
WorldCat.org
Full Text: DOI
References:
[1] Hubler, A. W.: Adaptive control of chaotic system [J]. Helv. phys. Acta 62, 343-346 (1989)
[2] Ott, E.; Grebogi, C.; Yorke, J. A.: Controlling chaos [J]. Phys. rev. Lett. 64, 1196-1199 (1990) · Zbl 0964.37501
[3] Pecora, L. M.; Carroll, T. M.: Synchronization of chaotic systems. Phys. rev. Lett. 64, No. 8, 821-830 (1990) · Zbl 0938.37019
[4] Carroll, T. L.; Pecora, L. M.: Synchronizing a chaotic systems. IEEE trans. Circuits systems 38, 453-456 (1991)
[5] Chen, G.; Dong, X.: From chaos to order. (1998) · Zbl 0908.93005
[6] Hu, G.; Xiao, J.; Zheng, Z.: Chaos control. (2000)
[7] Wang, G.; Yu, X.; Chen, S.: Chaos control, synchronization and its application. (2001)
[8] Lu, J.; Lu, J.; Chen, S.: Chaotic time series analysis and its application. (2002)
[9] Chen, G.; Xie, Q.: Synchronization stability analysis of the chaotic Rössler system. Int. J. Bifur. chaos 6, No. 11, 2153-2161 (1996) · Zbl 1298.34096
[10] Elabbasy, E. M.; Agiza, H. N.; El-Dessoky, M. M.: Synchronization of modified Chen system. Int. J. Bifur. chaos 14, No. 11 (2004) · Zbl 1090.37516
[11] Liao, T. -L.; Tsai, S. -H.: Adaptive synchronization of chaotic systems and its application to secure communications. Chaos, solitons & fractals 11, No. 9, 1387-1396 (2000) · Zbl 0967.93059
[12] Jiang, G. -P.; Chen, G.; Tang, K. S.: A new criterion for chaos synchronization using linear state feedback control. Int. J. Bifur. chaos 13, No. 8, 2343-2351 (2002) · Zbl 1064.37515
[13] Elabbasy, E. M.; Agiza, H. N.; El-Dessoky, M. M.: Adaptive synchronization of Lü system with uncertain parameters. Chaos, solitons & fractals 21, 657-667 (2004) · Zbl 1062.34039
[14] Liao, T.: Adaptive synchronization of two Lorenz systems. Chaos, solitons & fractals 9, 1555-1561 (1998) · Zbl 1047.37502
[15] Agiza, H. N.; Yassen, M. T.: Synchronization of Rössler and Chen chaotic dynamical systems using active control. Chaos, solitons & fractals 9, 1555-1561 (1998) · Zbl 0972.37019
[16] Elabbasy, E. M.; Agiza, H. N.; El-Dessoky, M. M.: Controlling and synchronization of Rössler system with uncertain parameters. Int. J. Nonlinear sci. Numer. simulat. 5, No. 2, 171-181 (2004) · Zbl 1062.34039
[17] Jiang, G. P.; Tang, K. S.: A global synchronization criterion for coupled chaotic systems via unidirectional linear error feedback approach. Int. J. Bifur. chaos 12, No. 10, 2239-2253 (2002) · Zbl 1052.34053
[18] Jiang, G. P.; Tang, K. S.; Chen, G. R.: A simple global synchronization criterion for coupled chaotic systems. Chaos, solitons & fractals 15, 925-935 (2003) · Zbl 1065.70015
[19] Sun, J.; Zhang, Y.: Some simple global synchronization criterion for coupled time-varying chaotic systems. Chaos, solitons & fractals 19, 93-98 (2004) · Zbl 1069.34068
[20] Chen, G.; Ueta, T.: Yet another chaotic attractor. Int. J. Bifur. chaos 9, 1465-1466 (1999) · Zbl 0962.37013
[21] Lu, J.; Chen, G.: A new chaotic attractor coined. Int. J. Bifur. chaos 12, No. 3, 659-661 (2002) · Zbl 1063.34510
[22] Vane\breve{}o\breve{}ek; Čelikovský: Control systems: from linear analysis to synthesis of chaos. (1996)
[23] Sparrow, C.: The Lorenz equations: bifurcations, chaos, and strange attractors. (1982) · Zbl 0504.58001
[24] Lorenz, E. N.: Deterministic nonperiodic flows. J. atmos. Sci. 20, 130-141 (1963)
[25] Lu, J.; Chen, G.; Cheng, D.; Čelikovský, S.: Bridge the gap between the Lorenz system and the Chen system. Int. J. Bifur. chaos 12, 2917-2926 (2002) · Zbl 1043.37026
[26] Liu, W.; Chen, G.: Can a three-dimensional smooth autonomous quadratic chaotic system generate a single four-scroll attractor?. Int. J. Bifur. chaos 14, No. 4 (2004) · Zbl 1086.37516
[27] Lü J, Chen G, Chen DZ. A new chaotic system and beyond: the generalized Lorenz-like system. Int J Bifur Chaos, in press