Stability of frames generated by nonlinear Fourier atoms. (English) Zbl 1086.42018

For a complex number \(a\), let \(\theta_a(t)= t+2\arctan\left(\frac{| a| \sin(t -Arg \;a)}{1-| a| \cos(t- Arg \;a)}\right).\) Extending Kadec’ 1/4-theorem, it is proved that the exponentials \(\{e^{i\lambda_n \theta_a(t)}\}_{n\in Z}\) form a Riesz basis for \(L^2(0,2\pi)\) (and a weighted version hereof) if \(\sup| \lambda_n-n| <1/4.\) Multiplying the functions with translates of an appropriate window function leads to a frame for \(L^2(\mathbf R)\).


42C15 General harmonic expansions, frames
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
Full Text: DOI


[1] DOI: 10.1007/BF02648880 · Zbl 0908.42025
[2] DOI: 10.1109/PROC.1963.2308
[3] Boashash B., Proc. IEEE 80 pp 417–
[4] DOI: 10.1090/S0002-9939-1995-1246520-X
[5] Cohen L., Time-Frequency Analysis (1995)
[6] DOI: 10.1137/1.9781611970104 · Zbl 0776.42018
[7] DOI: 10.1090/S0002-9947-1952-0047179-6
[8] Gabor D., Proc. IEE 93 pp 429–
[9] Garnett J. B., Bounded Analytic Functions (1987) · Zbl 1106.30001
[10] DOI: 10.1146/annurev.fluid.31.1.417
[11] DOI: 10.1098/rspa.1998.0193 · Zbl 0945.62093
[12] Kadec M. I., Sov. Math. Doklady 5 pp 559–
[13] Meyer Y., Ondelettes et Operateurs (1990)
[14] Nuttall A. H., Proc. IEEE (Lett.) pp 1458–
[15] Paley R. E. A. C., AMS Colloq. Publ. 19, in: Fourier Transforms in the Complex Domain (1934)
[16] DOI: 10.1109/78.558469
[17] DOI: 10.1016/j.physd.2005.03.005 · Zbl 1070.94504
[18] Saff E. B., Fundamentals of Complex Analysis for Mathematics, Science and Engineering (1976) · Zbl 0331.30001
[19] DOI: 10.1070/PU1977v020n12ABEH005479
[20] Ville J., Cables et Transm. 2 pp 61–
[21] Young R. M., An Introduction to Nonharmonic Fourier Series (1980) · Zbl 0493.42001
[22] Zygmund A., Trigonometric Series (1968)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.