zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Projection-proximal methods for general variational inequalities. (English) Zbl 1086.49005
Summary: We consider and analyze some new projection-proximal methods for solving general variational inequalities. The modified methods converge for pseudomonotone operators which is a weaker condition than monotonicity. The proposed methods include several new and known methods as special cases. Our results can be considered as a novel and important extension of the previously known results. Since the general variational inequalities include the quasi-variational inequalities and implicit complementarity problems as special cases, results proved in this paper continue to hold for these problems.

49J40Variational methods including variational inequalities
90C33Complementarity and equilibrium problems; variational inequalities (finite dimensions)
47J20Inequalities involving nonlinear operators
Full Text: DOI
[1] Noor, M. A.: General variational inequalities. Appl. math. Lett. 1, 119-121 (1988) · Zbl 0655.49005
[2] Noor, M. A.; Noor, K. I.: Self-adaptive projection algorithms for general variational inequalities. J. appl. Math. comput. 151, 659-670 (2004) · Zbl 1053.65048
[3] Noor, M. A.: New extragradient-type methods for general variational inequalities. J. math. Anal. appl. 277, 379-395 (2003) · Zbl 1033.49015
[4] Noor, M. A.: Some algorithms for general monotone mixed variational inequalities. Math. comput. Modelling 29, 19-24 (1999) · Zbl 0939.47055
[5] Noor, M. A.: Some developments in general variational inequalities. Appl. math. Comput. 152, 199-277 (2004) · Zbl 1134.49304
[6] Noor, M. A.: New approximation schemes for general variational inequalities. J. math. Anal. appl. 251, 217-229 (2000) · Zbl 0964.49007
[7] Noor, M. A.; Noor, K. I.; Rassias, T. M.: Some aspects of variational inequalities. J. comput. Appl. math. 47, 285-312 (1993) · Zbl 0788.65074
[8] Xiu, N.; Zhang, J.; Noor, M. A.: Tangent projection equations and general variational equalities. J. math. Anal. appl. 258, 755-762 (2001) · Zbl 1008.49010
[9] He, B. S.; Yang, Z.; Yuan, X. M.: Approximate proximal-extragradient type method for monotone variational inequalities. J. math. Anal. appl. 300, 362-374 (2004) · Zbl 1068.65087
[10] Solodov, M. V.; Svaiter, B. F.: Error bounds for proximal point subproblems and associated inexact proximal point algorithms. Math. programming 88, 371-389 (2000) · Zbl 0963.90064
[11] M.A. Noor, Theory of general variational inequalities, preprint, Etisalat College of Engineering, Sharjah, United Arab Emirates, 2004
[12] Stampacchia, G.: Formes bilineaires coercitives sur LES ensembles convexes. C. R. Acad. sci. Paris 258, 4413-4416 (1964) · Zbl 0124.06401
[13] He, B. S.; Liao, L. Z.: Improvement of some projection methods for monotone nonlinear variational inequalities. J. optim. Theory appl. 112, 111-128 (2002) · Zbl 1025.65036
[14] Giannessi, F.; Maugeri, A.; Pardalos, P. M.: Equilibrium problems: nonsmooth optimization and variational inequality models. (2001) · Zbl 0979.00025
[15] Bertsekas, D. P.; Tsitsiklis, J.: Parallel and distributed computation: numerical methods. (1989) · Zbl 0743.65107
[16] Rockafellar, R. T.: Monotone operators and the proximal point algorithm. SIAM J. Control optim. 14, 877-898 (1976) · Zbl 0358.90053
[17] Giannessi, F.; Maugeri, A.: Variational inequalities and network equilibrium problems. (1995) · Zbl 0834.00044
[18] Patriksson, M.: Nonlinear programming and variational inequalities: A unified approach. (1999) · Zbl 0913.65058